Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "double-layer bush"
Sort by:
Study on elastohydrodynamic lubrication performance of double-layer composite water-lubricated bearings
Double-layer composite water-lubricated bearing is a new type of water-lubricated bearing which can integrate the good damping performance of low elastic under-layer bush and good tribological performance of plastic layer bush. This paper analyzes its elastohydrodynamic lubrication performance by fluid–structure interaction (FSI) method, and studies the effects of eccentricity ratio, rotational speed, elastic modulus distribution and thickness distribution of bearing bush on its lubrication performance. Results show that the lubrication performance of double-layer bearing is more like that of plastic bearing. As rotational speed and eccentricity ratio increase, the maximum water film pressure, the load carrying capacity and the maximum bush deformation increase significantly. As the elastic modulus of the low elastic under-layer bush decreases, the total bush deformation increases significantly, but the load carrying capacity decreases slightly. The bush thickness distribution influences the deformation distribution of both low elastic under-layer bush and plastic layer bush, but have little impact on the total bush deformation and bearing lubrication performance.
A Fluid-Structure Interaction Method for the Elastohydrodynamic Lubrication Characteristics of Rubber-Plastic Double-Layer Water-Lubricated Journal Bearings
This paper proposes a fluid-structure interaction (FSI) numerical calculation method for investigation of the elastohydrodynamic lubrication performance of the rubber-plastic double-layer water-lubricated journal bearings. The accuracy and rapidity of the FSI method are improved by studying the effect of mesh density and by comparing the calculation results with those in the literature. Based on the proposed method, a series of numerical simulations are carried out to reveal the influence of operating conditions and structural parameters on the lubrication performance of the rubber-plastic bearings. Numerical results show that the bush deformation of the rubber-plastic bearing is between that of the rubber bearing and the plastic bearing, and the deformation area is close to that of the rubber bearing. The bearing load carrying capacity increases significantly with the rotational speed, eccentricity ratio, bearing length, and decrease with the clearance. But the influences of the plastic layer elastic modulus and thickness on bearing load are unremarkable. The effect of bush deformation on bearing load is noticeable when the eccentricity ratio is more than 0.8. The results are expected to provide design references for the bearings.