Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
357
result(s) for
"drift community"
Sort by:
Disentangling ecologically equivalent from neutral species
2019
The neutral theory of biodiversity explored the structure of a community of ecologically equivalent species. Such species are expected to display community drift dynamics analogous to neutral alleles undergoing genetic drift. While entire communities of species are not ecologically equivalent, recent field experiments have documented the existence of guilds of such neutral species embedded in real food webs. What demographic outcomes of the interactions within and between species in these guilds are expected to produce ecological drift versus coexistence remains unclear. To address this issue, and guide empirical testing, we consider models of a guild of ecologically equivalent competitors feeding on a single resource to explore when community drift should manifest. We show that community drift dynamics only emerge when the density‐dependent effects of each species on itself are identical to its density‐dependent effects on every other guild member. In contrast, if each guild member directly limits itself more than it limits the abundance of other guild members, all species in the guild are coexisting, even though they all are ecologically equivalent with respect to their interactions with species outside the guild (i.e. resources, predators, mutualists). Hence, considering only interspecific ecological differences generating density dependence, and not fully accounting for the preponderance of mechanisms causing intraspecific density dependence, will provide an incomplete picture for segregating between neutrality and coexistence. We also identify critical experiments necessary to disentangle guilds of ecologically equivalent species from those experiencing ecological drift, as well as provide an overview of ways of incorporating a mechanistic basis into studies of species coexistence and neutrality. Identifying these characteristics, and the mechanistic basis underlying community structure, is not merely an exercise in clarifying the semantics of coexistence and neutral theories, but rather reflects key differences that must exist among community members in order to determine how and why communities are structured. What demographic outcomes of interactions within and between species guilds are expected to produce ecological drift versus coexistence remains unclear. To address this issue, and guide empirical testing, the authors consider models of a guild of ecologically equivalent competitors feeding on a single resource to explore when community drift should manifest. Results from these models illustrate the need for a more mechanistic understanding of the processes underlying community structure.
Journal Article
The Role of Local and Upstream Colonisation in Determining Stream Periphyton Metacommunity Assemblages
2025
Stream periphyton is an ideal study system for explaining how dispersal shapes community patterns. Few studies have tried to investigate periphyton metacommunities at the reach scale, and studies comparing local versus upstream periphyton propagule sources are lacking. We aimed to address these knowledge gaps by disentangling environmental constraints and dispersal sources, including dispersal hypotheses related to periphyton functional guilds. We covered 25‐m sections of streambed with plastic silage cover sheets in three streams in Southern New Zealand, allowing river water to flow over the sheets. Samples on top of these sheets allowed periphyton colonisation only by drifting upstream propagules, while ‘control’ samples placed directly upstream of the plastic sheets were colonised by local and upstream propagules. We collected samples after 7, 14, and 25 days of colonisation. Response variables included periphyton biomass, community structure, and relative abundances of functional guilds. Control samples showed 1.5–6 times higher cell densities than plastic‐cover samples, suggesting that local colonisation is very important for biomass accrual. Periphyton communities on both tile types became more similar to each other with time, indicating that environmental filters overcame effects of colonisation sources. While motile and flagellated taxa showed the ability to reach their preferred microhabitats in all streams, the responses of the remaining functional guilds did not follow the expected patterns. We conclude that periphyton community assembly strongly depends on reach‐scale connectivity, which results in higher biomass accrual and community structure. These findings suggest that the mass effect paradigm is likely to be the principal metacommunity process shaping stream periphyton communities at the reach scale. Field experiment conducted to determine the role of local and upstream propagules as drivers of stream periphyton communities. Community composition, structure, and functional guilds were assessed. Local colonisation was identified as the primary propagule source, leading to a mass effect.
Journal Article
Unexpected understorey community development after 30 years in ancient and post-agricultural forests
by
Van Daele, Sander
,
Baeten, Lander
,
Hermy, Martin
in
Agricultural land
,
Agronomy. Soil science and plant productions
,
ancient forest
2010
1. Land-use change is considered one of the most radical and extensive disturbances that have influenced plant distributions and diversity patterns in forest understorey communities in much of Europe and eastern North America. In forests growing on former agricultural land, local species diversity and community differentiation among sites are generally reduced compared with ancient forests (i.e. forests with no historical record of agriculture). Yet, no study has determined how the compositional differences created by former land-use change over time as the forest sites recover from former agricultural use. 2. Here, we resurveyed 78 vegetation plots (half of the plots in ancient and half in post-agricultural forest) to demonstrate how three decades of forest development have changed the compositional differences between post-agricultural and ancient forest sites. The impact of land-use history and survey date was tested on two measures of species diversity and two measure of community divergence. 3. The data indicate that the imprint of former agricultural land use persisted over time, yet not through compositional stability. Parallel and strong vegetation shifts occurred in both ancient and post-agricultural forest: the species diversity decreased and local species cover strongly diverged, which indicates community drift. The observed understorey changes did thus not support the commonly accepted model of community development in post-agricultural forests, i.e. the diversity did not increase and the vegetation did not become more similar to the ancient forest vegetation over time. The changes in species composition were associated with an increase of common, competitive species at the expense of ancient forest indicator species. The source populations of ancient forest species have been gradually depleted, so the recovery of post-agricultural forests becomes even more precarious. 4. Synthesis. While land-use history is likely to persist as the primary predictor of local species diversity and community divergence, other environmental drivers may additionally structure forest understorey communities and lead to biotic impoverishment and pervasive species reordering on the time scale of only decades.
Journal Article
Spatial scale modulates the inference of metacommunity assembly processes
2019
The abundance and distribution of species across the landscape depend on the interaction between local, spatial, and stochastic processes. However, empirical syntheses relating these processes to spatiotemporal patterns of structure in metacommunities remain elusive. One important reason for this lack of synthesis is that the relative importance of the core assembly processes (dispersal, selection, and drift) critically depends on the spatial grain and extent over which communities are studied. To illustrate this, we simulated different aspects of community assembly on heterogeneous landscapes, including the strength of response to environmental heterogeneity (inherent to niche theory) vs. dispersal and stochastic drift (inherent to neutral theory). We show that increasing spatial extent leads to increasing importance of niche selection, whereas increasing spatial grain leads to decreasing importance of niche selection. The strength of these scaling effects depended on environment configuration, dispersal capacity, and niche breadth. By mapping the variation observed from the scaling effects in simulations, we could recreate the entire range of variation observed within and among empirical studies. This means that variation in the relative importance of assembly processes among empirical studies is largely scale dependent and cannot be directly compared. The scaling coefficient of the relative contribution of assembly processes, however, can be interpreted as a scale-integrative estimate to compare assembly processes across different regions and ecosystems. This emphasizes the necessity to consider spatial scaling as an explicit component of studies intended to infer the importance of community assembly processes.
Journal Article
Assembly of seed-associated microbial communities within and across successive plant generations
by
Simoneau, Philippe
,
Shade, Ashley
,
Campion, Claire
in
Assembly
,
Bacteria
,
bacterial communities
2018
Background and aims Seeds are involved in the transmission of microorganisms from one plant generation to another and consequently may act as the initial inoculum source for the plant microbiota. In this work, we assessed the structure and composition of the seed microbiota of radish (Raphanus sativus) across three successive plant generations. Methods Structure of seed microbial communities were estimated on individual plants through amplification and sequencing of genes that are markers of taxonomic diversity for bacteria (gyrB) and fungi (ITS1). The relative contribution of dispersal and ecological drift in inter-individual fluctuations were estimated with a neutral community model. Results Seed microbial communities of radish display a low heritability across plant generations. Fluctuations in microbial community profiles were related to changes in community membership and composition across plant generations, but also to variation between individual plants. Ecological drift was an important driver of the structure of seed bacterial communities, while dispersal was involved in the assembly of the fungal fraction of the seed microbiota. Conclusions These results provide a first glimpse of the governing processes driving the assembly of the seed microbiota.
Journal Article
Direct quantification of ecological drift at the population level in synthetic bacterial communities
by
Barozzi, Alan
,
Valenzuela-Cuevas, Adriana
,
Daffonchio, Daniele
in
13/31
,
631/158/855
,
631/326/2565
2021
In community ecology, drift refers to random births and deaths in a population. In microbial ecology, drift is estimated indirectly via community snapshots but in this way, it is almost impossible to distinguish the effect of drift from the effect of other ecological processes. Controlled experiments where drift is quantified in isolation from other processes are still missing. Here we isolate and quantify drift in a series of controlled experiments on simplified and tractable bacterial communities. We detect drift arising randomly in the populations within the communities and resulting in a 1.4–2% increase in their growth rate variability on average. We further use our experimental findings to simulate complex microbial communities under various conditions of selection and dispersal. We find that the importance of drift increases under high selection and low dispersal, where it can lead to ~5% of species loss and to ~15% increase in β-diversity. The species extinct by drift are mainly rare, but they become increasingly less rare when selection increases, and dispersal decreases. Our results provide quantitative insights regarding the properties of drift in bacterial communities and suggest that it accounts for a consistent fraction of the observed stochasticity in natural surveys.
Journal Article
Integrating species traits into species pools
by
Catano, Christopher P.
,
Spasojevic, Marko J.
,
LaManna, Joseph A.
in
Assembly
,
Biodiversity
,
Biogeography
2018
Despite decades of research on the species-pool concept and the recent explosion of interest in trait-based frameworks in ecology and biogeography, surprisingly little is known about how spatial and temporal changes in species-pool functional diversity (SPFD) influence biodiversity and the processes underlying community assembly. Current trait-based frameworks focus primarily on community assembly from a static regional species pool, without considering how spatial or temporal variation in SPFD alters the relative importance of deterministic and stochastic assembly processes. Likewise, species-pool concepts primarily focus on how the number of species in the species pool influences local biodiversity. However, species pools with similar richness can vary substantially in functional-trait diversity, which can strongly influence community assembly and biodiversity responses to environmental change. Here, we integrate recent advances in community ecology, trait-based ecology, and biogeography to provide a more comprehensive framework that explicitly considers how variation in SPFD, among regions and within regions through time, influences the relative importance of community assembly processes and patterns of biodiversity. First, we provide a brief overview of the primary ecological and evolutionary processes that create differences in SPFD among regions and within regions through time. We then illustrate how SPFD may influence fundamental processes of local community assembly (dispersal, ecological drift, niche selection). Higher SPFD may increase the relative importance of deterministic community assembly when greater functional diversity in the species pool increases niche selection across environmental gradients. In contrast, lower SPFD may increase the relative importance of stochastic community assembly when high functional redundancy in the species pool increases the influence of dispersal history or ecological drift. Next, we outline experimental and observational approaches for testing the influence of SPFD on assembly processes and biodiversity. Finally, we highlight applications of this framework for restoration and conservation. This species-pool functional diversity framework has the potential to advance our understanding of how local- and regional-scale processes jointly influence patterns of biodiversity across biogeographic regions, changes in biodiversity within regions over time, and restoration outcomes and conservation efforts in ecosystems altered by environmental change.
Journal Article
Dispersal increases ecological selection by increasing effective community size
by
Ron, Ronen
,
Fragman-Sapir, Ori
,
Kadmon, Ronen
in
Biodiversity
,
Biological Evolution
,
Biological Sciences
2018
Selection and drift are universally accepted as the cornerstones of evolutionary changes. Recent theories extend this view to ecological changes, arguing that any change in species composition is driven by deterministic fitness differences among species (enhancing selection) and/or stochasticity in birth and death rates of individuals within species (enhancing drift). These forces have contrasting effects on the predictability of ecological dynamics, and thus understanding the factors affecting their relative importance is crucial for understanding ecological dynamics. Here we test the hypothesis that dispersal increases the relative importance of ecological selection by increasing the effective size of the community (i.e., the size relevant for competitive interactions and drift). According to our hypothesis, dispersal increases the effective size of the community by mixing individuals from different localities. This effect diminishes the relative importance of demographic stochasticity, thereby reducing drift and increasing the relative importance of selective forces as drivers of species composition. We tested our hypothesis, which we term the “effective community size” hypothesis, using two independent experiments focusing on annual plants: a field experiment in which we manipulated the magnitude of dispersal and a mesocosm experiment in which we directly manipulated the effective size of the communities. Both experiments, as well as related model simulations, were consistent with the hypothesis that increasing dispersal increases the role of selective forces as drivers of species composition. This finding has important implications for our understanding of the fundamental forces affecting community dynamics, as well as the management of species diversity, particularly in patchy and fragmented environments.
Journal Article
Disturbance alters beta‐diversity but not the relative importance of community assembly mechanisms
by
Jiménez, Iván
,
Crandall, Raelene M
,
Austin, Amy
in
Biodiversity
,
biogeography
,
Community composition
2015
Ecological disturbances are often hypothesized to alter community assembly processes that influence variation in community composition (β‐diversity). Disturbance can cause convergence in community composition (low β‐diversity) by increasing niche selection of disturbance‐tolerant species. Alternatively, disturbance can cause divergence in community composition (high β‐diversity) by increasing habitat filtering across environmental gradients. However, because disturbance may also influence β‐diversity through random sampling effects owing to changes in the number of individuals in local communities (community size) or abundances in the regional species pool, observed patterns of β‐diversity alone cannot be used to unambiguously discern the relative importance of community assembly mechanisms. We compared β‐diversity of woody plants and inferred assembly mechanisms among unburned forests and forests managed with prescribed fires in the Missouri Ozarks, USA. Using a null‐model approach, we compared how environmental gradients influenced β‐diversity after controlling for differences in local community size and regional species abundances between unburned and burned landscapes. Observed β‐diversity was higher in burned landscapes. However, this pattern disappeared or reversed after controlling for smaller community size in burned landscapes. β‐diversity was higher than expected by chance in both landscapes, indicating an important role for processes that create clumped species distributions. Moreover, fire appeared to decrease clumping of species at broader spatial scales, suggesting homogenization of community composition through niche selection of disturbance‐tolerant species. Environmental variables, however, explained similar amounts of variation in β‐diversity in both landscapes, suggesting that disturbance did not alter the relative importance of habitat filtering. Our results indicate that contingent responses of communities to fire reflect a combination of fire‐induced changes in local community size and scale‐dependent effects of fire on species clumping across landscapes. Synthesis. Although niche‐based mechanisms of community assembly are often invoked to explain changes in community composition following disturbance, our results suggest that these changes also arise through random sampling effects owing to the influence of disturbance on community size. Comparative studies of these processes across disturbed ecosystems will provide important insights into the ecological conditions that determine when disturbance alters the interplay of deterministic and stochastic processes in natural and human‐modified landscapes.
Journal Article
High beta diversity among small islands is due to environmental heterogeneity rather than ecological drift
2018
Aims: Both ecological drift and environmental heterogeneity can produce high beta diversity among communities, but only the effect of drift is expected to be enhanced in communities of small size. Few studies have explicitly tested the influence of community size on patterns of beta diversity. Here we applied a series of analyses aimed at testing the influence of drift versus environmental heterogeneity on beta diversity among tree communities on islands of variable size. Location: Thousand Island Lake, Zhejiang Province, China. Methods: We used data on mapped tree communities and environmental conditions for 20 small islands (<1 ha) and nine large islands (>1 ha) created via the construction of a hydroelectric dam in 1959. Beta diversity was calculated using abundance-based multiple-site dissimilarity based on the Bray–Curtis index. On the basis of the hypothesis of ecological drift among small islands, we tested for higher beta diversity among small than large islands using: (a) raw data (b) controlling for the number of individual sampled on a given island, and (c) controlling for the contiguous sampling area and thus for intra-island environmental heterogeneity. We also tested the prediction that the relationship between species composition and environmental variables should be weaker on small islands using canonical correspondence analyses. Results: Using raw data and controlling for the number of individuals, community dissimilarity was significantly greater among small islands than among large islands. However, when controlling for contiguous sampling area this difference disappeared. Contrary to the prediction based on ecological drift, the strength of overall composition–environment relationships was not significantly weaker for small islands in any of the analyses, and environmental heterogeneity increased faster with area among small islands than among large islands. Main Conclusions: Despite a result using raw data that was consistent with the hypothesis of ecological drift, our full set of results clearly indicated the high beta diversity among small islands was more likely due to environmental heterogeneity rather than ecological drift. This result points to a clear need to control for sampling area among habitats of different size when testing for statistical signatures of drift.
Journal Article