Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"driver workload estimation"
Sort by:
Demonstrating Brain-Level Interactions Between Visuospatial Attentional Demands and Working Memory Load While Driving Using Functional Near-Infrared Spectroscopy
by
Unni, Anirudh
,
Ihme, Klas
,
Jipp, Meike
in
brain-level interactions
,
Cognitive ability
,
Computer applications
2019
Driving is a complex task concurrently drawing on multiple cognitive resources. Yet, there is a lack of studies investigating interactions at the brain-level among different driving subtasks in dual-tasking. This study investigates how visuospatial attentional demands related to increased driving difficulty interacts with different working memory load (WML) levels at the brain level. Using multichannel whole-head high density functional near-infrared spectroscopy (fNIRS) brain activation measurements, we aimed to predict driving difficulty level, both separate for each WML level and with a combined model. Participants drove for approximately 60 min on a highway with concurrent traffic in a virtual reality driving simulator. In half of the time, the course led through a construction site with reduced lane width, increasing visuospatial attentional demands. Concurrently, participants performed a modified version of the
-back task with five different WML levels (from 0-back up to 4-back), forcing them to continuously update, memorize, and recall the sequence of the previous '
' speed signs and adjust their speed accordingly. Using multivariate logistic ridge regression, we were able to correctly predict driving difficulty in 75.0% of the signal samples (1.955 Hz sampling rate) across 15 participants in an out-of-sample cross-validation of classifiers trained on fNIRS data separately for each WML level. There was a significant effect of the WML level on the driving difficulty prediction accuracies [range 62.2-87.1%; χ
(4) = 19.9,
< 0.001, Kruskal-Wallis
test] with highest prediction rates at intermediate WML levels. On the contrary, training one classifier on fNIRS data across all WML levels severely degraded prediction performance (mean accuracy of 46.8%). Activation changes in the bilateral dorsal frontal (putative BA46), bilateral inferior parietal (putative BA39), and left superior parietal (putative BA7) areas were most predictive to increased driving difficulty. These discriminative patterns diminished at higher WML levels indicating that visuospatial attentional demands and WML involve interacting underlying brain processes. The changing pattern of driving difficulty related brain areas across WML levels could indicate potential changes in the multitasking strategy with level of WML demand, in line with the multiple resource theory.
Journal Article
Estimating Driver Personality Traits from On-Road Driving Data
by
Fujikake, Kazuhiro
,
Kimura, Ryusei
,
Yoshihara, Yuki
in
Accuracy
,
Adaptive systems
,
Advanced driver assistance systems
2023
This paper focuses on the estimation of a driver's psychological characteristics using driving data for driving assistance systems. Driving assistance systems that support drivers by adapting individual psychological characteristics can provide appropriate feedback and prevent traffic accidents. As a first step toward implementing such adaptive assistance systems, this research aims to develop a model to estimate drivers' psychological characteristics, such as cognitive function, psychological driving style, and workload sensitivity, from on-road driving behavioral data using machine learning and deep learning techniques. We also investigated the relationship between driving behavior and various cognitive functions, including the Trail Making Test (TMT) and Useful Field of View (UFOV) test, through regression modeling. The proposed method focuses on road type information and captures various durations of time-series data observed from driving behaviors. First, we segment the driving time-series data into two road types, namely, arterial roads and intersections, to consider driving situations. Second, we further segment data into many sequences of various durations. Third, statistics are calculated from each sequence. Finally, these statistics are used as input features of machine learning models to estimate psychological characteristics. The experimental results show that our model can estimate a driver's cognitive function, namely, the TMT~(B) and UFOV test scores, with Pearson correlation coefficients \\(r\\) of 0.579 and 0.708, respectively. Some characteristics, such as psychological driving style and workload sensitivity, are estimated with high accuracy, but whether various duration segmentation improves accuracy depends on the characteristics, and it is not effective for all characteristics.
Reducing stress and fuel consumption providing road information
2014
In this paper, we propose a solution to reduce the stress level of the driver, minimize fuel consumption and improve safety. The system analyzes the driving style and the driver’s workload during the trip while driving. If it discovers an area where the stress increases and the driving style is not appropriate from the point of view of energy efficiency and safety for a particular driver, the location of this area is saved in a shared database. On the other hand, the implemented solution warns a particular user when approaching a region where the driving is difficult (high fuel consumption and stress) using the shared database based on previous recorded knowledge of similar drivers in that area. In this case, the proposal provides an optimal deceleration profile if the vehicle speed is not adequate. Therefore, he or she may adjust the vehicle speed with both a positive impact on the driver workload and fuel consumption. The Data Envelopment Analysis algorithm is used to estimate the efficiency of driving and the driver’s workload in in each area. We employ this method because there is no preconceived form on the data in order to calculate the efficiency and stress level. A validation experiment has been conducted using both a driving simulator and a real environment with 12 participants who made 168 driving tests. The system reduced the slowdowns (38%), heart rate (4.70%), and fuel consumption (12.41%) in the real environment. The proposed solution is implemented on Android mobile devices and does not require the installation of infrastructure on the road. It can be installed on any model of vehicle.
Journal Article