Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
47,167 result(s) for "drosophila"
Sort by:
First in fly : Drosophila research and biological discovery
A single species of fly, Drosophila melanogaster, has been the subject of scientific research for more than one hundred years. Why does this tiny insect merit such intense scrutiny? Drosophila's importance as a research organism began with its short life cycle, ability to reproduce in large numbers, and easy-to-see mutant phenotypes. Over time, laboratory investigation revealed surprising similarities between flies and other animals at the level of genes, gene networks, cell interactions, physiology, immunity, and behavior. Like humans, flies learn and remember, fight microbial infection, and slow down as they age. Scientists use Drosophila to investigate complex biological activities in a simple but intact living system. Fly research provides answers to some of the most challenging questions in biology and biomedicine, including how cells transmit signals and form ordered structures, how we can interpret the wealth of human genome data now available, and how we can develop effective treatments for cancer, diabetes, and neurodegenerative diseases. Written by a leader in the Drosophila research community, First in Fly celebrates key insights uncovered by investigators using this model organism. Stephanie Elizabeth Mohr draws on these \"first in fly\" findings to introduce fundamental biological concepts gained over the last century and explore how research in the common fruit fly has expanded our understanding of human health and disease.-- Provided by publisher
Sight of parasitoid wasps accelerates sexual behavior and upregulates a micropeptide gene in Drosophila
Parasitoid wasps inflict widespread death upon the insect world. Hundreds of thousands of parasitoid wasp species kill a vast range of insect species. Insects have evolved defensive responses to the threat of wasps, some cellular and some behavioral. Here we find an unexpected response of adult Drosophila to the presence of certain parasitoid wasps: accelerated mating behavior. Flies exposed to certain wasp species begin mating more quickly. The effect is mediated via changes in the behavior of the female fly and depends on visual perception. The sight of wasps induces the dramatic upregulation in the fly nervous system of a gene that encodes a 41-amino acid micropeptide. Mutational analysis reveals that the gene is essential to the behavioral response of the fly. Our work provides a foundation for further exploration of how the activation of visual circuits by the sight of a wasp alters both sexual behavior and gene expression. Parasitoids exploit host bodies for reproduction, selecting for host defences. A new host defence is reported, in which adult Drosophila accelerate mating behaviour at the sight of certain parasitoid wasps, mediated by the upregulation of a nervous system gene that encodes a 41-amino acid micropeptide.
Predicting the Risk of Tart Cherry
Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae) is a vinegar fly native to East Asia that has rapidly expanded its range to become a pest of sweet cherry (Prunus avium, L. 1753 [Rosales: Rosaceae]) and tart cherry (P. cerasus, L. 1753) in North America and Europe. The goal of the research presented herein was to improve the decision-making process for managing D. suzukii in tart cherry. Knowing that D. suzukii females are attracted to ripening fruit, we measured fruit infestation by D. suzukii as it relates to an existing fruit development model that uses full bloom as a biofix, calculating accumulated growing degree days (GDD) with a lower threshold of 4[degrees]C. Increasing larval infestation was highly correlated with fruit development expressed as GDD post-bloom with very few larvae developing in fruit subjected to no-choice assays prior to 530 GDD (base 4[degrees]C) and no larvae detected in naturally infested fruit prior to 800 GDD. Our findings provide the first quantification of the relationship between fruit development and D. suzukii infestation that allows for pinpointing the timing of fruit susceptibility and that could be used as the basis for a more sustainable management program for this pest in tart cherry orchards. Key words: spotted wing drosophila, no-choice, degree-day model, larval infestation
Cold acclimation triggers major transcriptional changes in Drosophila suzukii
Background Insects have the capacity to adjust their physiological mechanisms during their lifetime to promote cold tolerance and cope with sublethal thermal conditions, a phenomenon referred to as thermal acclimation. The spotted wing drosophila, Drosophila suzukii , is an invasive fruit pest that, like many other species, enhances its thermotolerance in response to thermal acclimation. However, little is known about the underlying mechanisms of this plastic response. Here, we promoted flies’ cold tolerance by gradually increasing acclimation duration (i.e. pre-exposure from 2 h to 9 days at 10 °C), and then compared transcriptomic responses of cold hardy versus cold susceptible phenotypes using RNA sequencing. Results Cold tolerance of D. suzukii increased with acclimation duration; the longer the acclimation, the higher the cold tolerance. Cold-tolerant flies that were acclimated for 9 days were selected for transcriptomic analyses. RNA sequencing revealed a total of 2908 differentially expressed genes: 1583 were up- and 1325 were downregulated in cold acclimated flies. Functional annotation revealed many enriched GO-terms among which ionic transport across membranes and signaling were highly represented in acclimated flies. Neuronal activity and carbohydrate metabolism were also enriched GO-terms in acclimated flies. Results also revealed many GO-terms related to oogenesis which were underrepresented in acclimated flies. Conclusions Involvement of a large cluster of genes related to ion transport in cold acclimated flies suggests adjustments in the capacity to maintain ion and water homeostasis. These processes are key mechanisms underlying cold tolerance in insects. Down regulation of genes related to oogenesis in cold acclimated females likely reflects that females were conditioned at 10 °C, a temperature that prevents oogenesis. Overall, these results help to understand the molecular underpinnings of cold tolerance acquisition in D. suzukii . These data are of importance considering that the invasive success of D. suzukii in diverse climatic regions relates to its high thermal plasticity.
Emergence and Diversification of Fly Pigmentation Through Evolution of a Gene Regulatory Module
The typical pattern of morphological evolution associated with the radiation of a group of related species is the emergence of a novel trait and its subsequent diversification. Yet the genetic mechanisms associated with these two evolutionary steps are poorly characterized. Here, we show that a spot of dark pigment on fly wings emerged from the assembly of a novel gene regulatory module in which a set of pigmentation genes evolved to respond to a common transcriptional regulator determining their spatial distribution. The primitive wing spot pattern subsequently diversified through changes in the expression pattern of this regulator. These results suggest that the genetic changes underlying the emergence and diversification of wing pigmentation patterns are partitioned within genetic networks.
Genetic architecture of subcortical brain structures in 38,851 individuals
Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease. Genome-wide analysis identifies variants associated with the volume of seven different subcortical brain regions defined by magnetic resonance imaging. Implicated genes are involved in neurodevelopmental and synaptic signaling pathways.
Recent advances in the genetic basis of taste detection in Drosophila
The insect gustatory system senses taste information from environmental food substrates and processes it to control feeding behaviors. Drosophila melanogaster has been a powerful genetic model for investigating how various chemical cues are detected at the molecular and cellular levels. In addition to an understanding of how tastants belonging to five historically described taste modalities (sweet, bitter, acid, salt, and amino acid) are sensed, recent findings have identified taste neurons and receptors that recognize tastants of non-canonical modalities, including fatty acids, carbonated water, polyamines, H 2 O 2 , bacterial lipopolysaccharide (LPS), ammonia, and calcium. Analyses of response profiles of taste neurons expressing different suites of chemosensory receptors have allowed exploration of taste coding mechanisms in primary sensory neurons. In this review, we present the current knowledge of the molecular and cellular basis of taste detection of various categories of tastants. We also summarize evidence for organotopic and multimodal functions of the taste system. Functional characterization of peripheral taste neurons in different organs has greatly increased our understanding of how insect behavior is regulated by the gustatory system, which may inform development of novel insect pest control strategies.
Protein-coding circular RNA enhances antiviral immunity via JAK/STAT pathway in Drosophila
Eukaryotic hosts possess a complex, multilayered immune system that guards against pathogen invasion. In fruit flies, RNA interference (RNAi) drives robust antiviral immunity, prompting many viruses to express viral suppressors of RNAi (VSRs) to establish virulent infections. However, little is known about immune responses that confer resistance against viruses with potent VSRs. In this study, we discovered that Drosophila cells infected with Drosophila C virus (DCV), a natural viral pathogen possessing a potent VSR, upregulated the expression of circular RNA circZfh1. circZfh1 exhibits DCV-specific antiviral activity, encoding a 274-amino acid protein, CRAV, crucial for its antiviral effects. As a different reading frame from its parental Zfh1 gene, the C-terminal 69 amino acids are unique to CRAV, undergoing faster evolution. CRAV activates the JAK-STAT pathway, enhancing the immune response to DCV infection. Therefore, our work uncovers a new strategy for suppressing viral counter-defense through protein-coding circular RNA in fruit flies.