Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
602 result(s) for "drought tolerance indices"
Sort by:
Grain yield and drought tolerance indices of maize hybrids
Drought is one of the major abiotic stress factors limiting crops production in Oltenia area, Romania. In order to study the response of six maize hybrids to drought stress, the trials were conducted in research field of ARDS Simnic – Craiova, during 2017-2018 (non-stressed conditions) and 2018-2019 (drought stress). Six tolerance indices including: abiotic tolerance index (ATI), stress susceptibility percentage index (SSPI), Stress tolerance index (STI), mean productivity (MP), relative drought index (RDI) and golden mean (GM), were utilized on the basis of grain yield. Results from analysis of variance showed that there is a significant difference in 1% of probability level among hybrids in terms of grain yield and tolerance indices. The yield in non-stress conditions (Yp) showed significant positive correlations with ATI, SSPI, STI and MP, and negative correlation with RDI and GM. The yield  in drought conditions (Ys) showed significant positive correlation with RDI and GM, and negative correlation with ATI and SSPI. None of the tolerance indices used could identify the high yielding hybrids under drought and non-stress conditions. Based on the ranking method, the hybrids ‘Felix’ and ‘P 9903’ were the most droughts tolerant. Therefore, they hybrids are recommended to be grown under drought prone areas and to be used as parents for breeding of drought tolerance in other cultivars.
Evaluation of Drought Tolerance in Maize Inbred Lines Selected from the Shaan A Group and Shaan B Group
Drought is one of the most prevailing abiotic stresses affecting the growth, development, and productivity of maize. Knowledge of drought tolerance could help in maize improvement. However, less research has been done to comprehensively evaluate the drought tolerance of maize inbred lines. We used 27 elite maize inbred lines selected from Shaan A group and Shaan B group breeding populations to estimate their drought tolerance in 3 years 2 locations under normal field conditions and low irrigation. Using principal component analysis (PCA) and GGE biplots, all inbred lines, including the controls, could be divided into four types. Ten lines could be categorized as the high-yield drought-resistant type (‘KB081’, ‘KA105’, ‘KB417’, ‘KB215’, ‘KB-7’, ‘2013KB-37’, ‘KA203’, ‘2012KA-34’, ‘KA225’, and ‘91227’) because of their stability and wide adaptability. Compared with the controls, a large proportion of the inbred lines selected from Shaan A and Shaan B breeding populations demonstrated higher drought resistance. Our results suggest that multi-year drought screening can be used as a tool to improve the drought resistance of maize inbred lines and provide a scientific basis for making better use of the Shaan A and Shaan B maize inbred lines to breed new varieties and to identify existing drought-resistant maize varieties.
Drought Tolerance Identification and Eevluation of Maize during Flowering Stage in Guangxi
Total 20 maize varieties were subjected to drought stress at flowering stage, and then the relative water content, soluble sugar content, chlorophyll content, malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in their leaves, as well as their yields were determined. The drought tolerance of the physiological and biochemical indexes was scored by five-level scoring method, and the drought tolerance index was calculated by the yield index to comprehensively evaluate the drought tolerance of maize during flowering stage. The results showed that the scores of drought tolerance of the maize varieties ranged from 1.929 3 to 5.659 5. Among them, the scores of Zhengda 619, Guidan 162 and Guidan 0810 were greater than 5.0, followed by Dika 008, Xianyu 30T60, Xianzhengda 901, Qingnong 68, South America No.1 and Wanchuan 1306 of which the scores were in the range of 4.0-5.0. The drought tolerance indexes were in the range of 0.410 4-1.096 3. Among the test maize varieties, the drought tolerance indexes of Guidan 0810, Pacific 99 and Zhengda 619 were greater than 1.0, and those of Xianyu 30T60, Dika 008 and South America No.1 were in the range of 0.9-1.0. The correlation between the two kinds of evaluation results was 0.588 7 and was extremely significant. The five-level scoring method and the drought tolerance index can be used simultaneously for the evaluation of drought tolerance of maize during flowering stage. The two aspects of evaluation results showed that Guidan 0810, Zhengda 619, Xianyu 30T60, Dika 008 and South America No.1 were drought-tolerant varieties, among which Guidan 0810 and Zhengda 619 were extremely highly drought-tolerant varieties.
Screening tomato genotypes for early-stage drought tolerance using polyethylene glycol-induced osmotic stress
Background Drought stress is a major abiotic constraint to tomato ( Solanum lycopersicum L.) production, particularly at early developmental stages. Screening genotypes under controlled osmotic stress is crucial for identifying drought-tolerant cultivars. This study evaluated five tomato genotypes Khumal 2, Monoprecos, NGRCO9569, NGRCO9571, and Srijana for germination and seedling performance under polyethylene glycol (PEG)-induced drought stress to identify resilient candidates for breeding programs. Results A completely randomized design (CRD) experiment was conducted under three PEG levels (0%, 3%, and 6%). Significant genotype × stress interactions were observed ( p  < 0.05) across germination and seedling traits. NGRCO9569, Monoprecos, and Khumal 2 maintained high germination rates, seedling vigor, and biomass under stress. In contrast, Srijana exhibited sharp declines in all measured parameters, including complete germination failure at 6% PEG. Vigor index and root-to-shoot ratio increased in tolerant genotypes, indicating effective stress adaptation. Multivariate analyses, including MGIDI and DRI indices, consistently ranked NGRCO9569 and Khumal 2 as top performers. Strong positive correlations were found among plant height, root spread, biomass, and vigor. Conclusion NGRCO9569, Monoprecos, and Khumal 2 demonstrated superior drought tolerance under PEG-induced stress and are promising candidates for field validation and breeding. The observed genetic variability highlights potential for drought-resilient tomato improvement. Integrating these genotypes into molecular studies focusing on QTL mapping and gene expression profiling will aid in developing climate-resilient cultivars suited for low-irrigation environments.
Analysis of genetic diversity and genome-wide association study for drought tolerance related traits in Iranian bread wheat
Background Drought is most likely the most significant abiotic stress affecting wheat yield. The discovery of drought-tolerant genotypes is a promising strategy for dealing with the world’s rapidly diminishing water resources and growing population. A genome-wide association study (GWAS) was conducted on 298 Iranian bread wheat landraces and cultivars to investigate the genetic basis of yield, yield components, and drought tolerance indices in two cropping seasons (2018–2019 and 2019–2020) under rainfed and well-watered environments. Results A heatmap display of hierarchical clustering divided cultivars and landraces into four categories, with high-yielding and drought-tolerant genotypes clustering in the same group. The results of the principal component analysis (PCA) demonstrated that selecting genotypes based on the mean productivity (MP), geometric mean productivity (GMP), harmonic mean (HM), and stress tolerance index (STI) can help achieve high-yield genotypes in the environment. Genome B had the highest number of significant marker pairs in linkage disequilibrium (LD) for both landraces (427,017) and cultivars (370,359). Similar to cultivars, marker pairs on chromosome 4A represented the strongest LD ( r 2  = 0.32). However, the genomes D, A, and B have the highest LD, respectively. The single-locus mixed linear model (MLM) and multi-locus random-SNP-effect mixed linear model (mrMLM) identified 1711 and 1254 significant marker-trait association (MTAs) (-log10 P  > 3) for all traits, respectively. A total of 874 common quantitative trait nucleotides (QTNs) were simultaneously discovered by both MLM and mrMLM methods. Gene ontology revealed that 11, 18, 6, and 11 MTAs were found in protein-coding regions (PCRs) for spike weight (SW), thousand kernel weight (TKW), grain number per spike (GN), and grain yield (GY), respectively. Conclusion The results identified rich regions of quantitative trait loci (QTL) on Ch. 4A and 5A suggest that these chromosomes are important for drought tolerance and could be used in wheat breeding programs. Furthermore, the findings indicated that landraces studied in Iranian bread wheat germplasm possess valuable alleles, that are responsive to water-limited conditions. This GWAS experiment is one of the few types of research conducted on drought tolerance that can be exploited in the genome-mediated development of novel varieties of wheat.
Exploring drought tolerance in melon germplasm through physiochemical and photosynthetic traits
Drought stress is a global concern that has a negative impact on the growth and production of melon (Cucumis melo L.). In this study, 58 melon accessions were subjected to drought stress induced by polyethylene glycol (PEG-6000). Comprehensive evaluations were performed to identify various morphological, biochemical, and physiological attributes of melon. Drought stress significantly reduced shoot length (SL), stem diameter (SD), leaf width (LW), and leaf length (LL) in the melon seedlings. Similarly, drought stress resulted in a significant reduction in photosynthetic pigments (Chl, Car), relative water content (RWC), chlorophyll fluorescence (Fv/Fm), transpiration rate (Tr), stomatal conductance (Gs), net photosynthetic rate (Pn) and intercellular CO2 concentration (Ci). On the other hand, biochemical indicators such as malondialdehyde content (MDA), soluble protein content (SP) and soluble sugar content (SS) were observed to be enhanced upon exposure to drought stress. Most indicators showed strong positive correlations based on Pearson correlation analysis. Furthermore, the modified membership function and D values for the drought tolerance indices were calculated to evaluate the drought tolerance level of melon accessions. In addition, melon accessions were classified into drought-resistant and drought-sensitive groups based on cluster analysis. As a result, mel-46, mel-58 and mel-15 were identified as drought-resistant genotypes among the assessed melon accessions. Taken together, these accessions provide potential genetic resources for further improvement and breeding of melon genotypes. Furthermore, the indicators responsible for the assessment of drought tolerance can provide a baseline for future studies.
Response of Maize Hybrids in Drought-Stress Using Drought Tolerance Indices
This study was conducted to investigate the response of maize hybrids to drought stress and to select the most drought-tolerant cultivar compared to other hybrids. The experiment was performed on six maize hybrids in a randomized complete block design (RCBD) with three replications under regular irrigation and limited irrigation in the vegetative and reproductive stages in Iran. Drought tolerance indices (TOL, MP, GMP, STI, SSI, and HAR) for the grain yield of genotypes were calculated, and principal component analysis was based on them. The results obtained from estimating the indices showed that the SC647 and KSC704 hybrids, while having good performance in both conditions, also have drought tolerance. Examining the correlation between drought tolerance indices and yield in both conditions, among the indices used to detect drought tolerance, STI, MP, and GMP indices can be considered suitable for selecting high-yielding hybrids in these conditions. The principal components analysis on the stress-tolerance index showed that MP and GMP indices could be used as the best indices with high coefficients to select stress-tolerance hybrids. SC647 and KSC704 hybrids were identified and selected as hybrids with high tolerance to moisture stress. The results of drought tolerance indices in the emergence stage of the crest showed that the KSC260 hybrid has the lowest level of stress sensitivity. SC647 hybrids showed the lowest susceptibility to drought stress in the ear emergence stage.
Evaluation of drought-tolerant varieties based on root system architecture in cotton (Gossypium hirsutum L.)
Background Root system architecture (RSA) exhibits significant genetic variability and is closely associated with drought tolerance. However, the evaluation of drought-tolerant cotton cultivars based on RSA in the field conditions is still underexplored. Results So, this study conducted a comprehensive analysis of drought tolerance based on physiological and morphological traits (i.e., aboveground and RSA, and yield) within a rain-out shelter, with two water treatments: well-watered (75 ± 5% soil relative water content) and drought stress (50 ± 5% soil relative water content). The results showed that principal component analysis identified six principal components, including highlighting the importance of root traits and canopy parameters in influencing drought tolerance. Moreover, the systematic cluster analysis was used to classify 80 cultivars into 5 categories, including drought-tolerant cultivars, relatively drought-tolerant cultivars, intermediate cultivars, relatively drought-sensitive cultivars, and drought-sensitive cultivars. Further validation of the drought tolerance index showed that the yield drought tolerance index and biomass drought tolerance index of the drought-tolerant cultivars were 8.97 and 5.05 times higher than those of the drought-sensitive cultivars, respectively. Conclusions The RSA of drought-tolerant cultivars was characterised by a significant increase in average length-all lateral roots, a significant decrease in average lateral root emergence angle and a moderate root/shoot ratio. In contrast, the drought-sensitive cultivars showed a significant decrease in average length-all lateral roots and a significant increase in both average lateral root emergence angle and root/shoot ratio. It is therefore more comprehensive and accurate to assess field crop drought tolerance by considering root performance.
Association Mapping of Drought Tolerance Indices in Ethiopian Durum Wheat (Triticum turgidum ssp. durum)
Ethiopia is a major producer of durum wheat in sub-Saharan Africa. However, its production is prone to drought stress as it is fully dependent on rain, which is erratic and unpredictable. This study aimed to detect marker-trait associations (MTAs) and quantitative trait loci (QTLs) related to indices. Six drought tolerance indices, i.e., drought susceptibility index (DSI), geometric mean productivity (GMP), relative drought index (RDI), stress tolerance index (STI), tolerance index (TOL), and yield stability index (YSI) were calculated from least-square means (lsmeans) of grain yield (GY) and traits significantly ( p < 0.001) correlated with grain yield (GY) under field drought stress (FDS) and field non-stress (FNS) conditions. GY, days to grain filling (DGF), soil plant analysis development (SPAD) chlorophyll meter, seeds per spike (SPS), harvest index (HI), and thousand kernel weight (TKW) were used to calculate DSI, GMP, RDI, STI, TOL, and YSI drought indices. Accessions, DW084, DW082, DZ004, C037, and DW092 were selected as the top five drought-tolerant based on DSI, RDI, TOL, and YSI combined ranking. Similarly, C010, DW033, DW080, DW124-2, and C011 were selected as stable accessions based on GMP and STI combined ranking. A total of 184 MTAs were detected linked with drought indices at –log 10 p ≥ 4.0,79 of which were significant at a false discovery rate (FDR) of 5%. Based on the linkage disequilibrium (LD, r 2 ≥ 0.2), six of the MTAs with a positive effect on GY-GMP were detected on chromosomes 2B, 3B, 4A, 5B, and 6B, explaining 14.72, 10.07, 26.61, 21.16, 21.91, and 22.21% of the phenotypic variance, respectively. The 184 MTAs were clustered into 102 QTLs. Chromosomes 1A, 2B, and 7A are QTL hotspots with 11 QTLs each. These chromosomes play a key role in drought tolerance and respective QTL may be exploited by marker-assisted selection for improving drought stress tolerance in wheat.
Dissection of QTLs conferring drought tolerance in B. carinata derived B. juncea introgression lines
Background Drought is one of the important abiotic stresses that can significantly reduce crop yields. In India, about 24% of Brassica juncea (Indian mustard) cultivation is taken up under rainfed conditions, leading to low yields due to moisture deficit stress. Hence, there is an urgent need to improve the productivity of mustard under drought conditions. In the present study, a set of 87 B. carinata -derived B. juncea introgression lines (ILs) was developed with the goal of creating drought-tolerant genotypes. Method The experiment followed the augmented randomized complete block design with four blocks and three checks. ILs were evaluated for seed yield and its contributing traits under both rainfed and irrigated conditions in three different environments created by manipulating locations and years. To identify novel genes and alleles imparting drought tolerance, Quantitative Trait Loci (QTL) analysis was carried out. Genotyping-by-Sequencing (GBS) approach was used to construct the linkage map. Results The linkage map consisted of 5,165 SNP markers distributed across 18 chromosomes and spanning a distance of 1,671.87 cM. On average, there was a 3.09 cM gap between adjoining markers. A total of 29 additive QTLs were identified for drought tolerance; among these, 17 (58.6% of total QTLs detected) were contributed by B. carinata (BC 4), suggesting a greater contribution of B. carinata towards improving drought tolerance in the ILs. Out of 17 QTLs, 11 (64.7%) were located on the B genome, indicating more introgression segments on the B genome of B. juncea . Eight QTL hotspots, containing two or more QTLs, governing seed yield contributing traits, water use efficiency, and drought tolerance under moisture deficit stress conditions were identified. Seventeen candidate genes related to biotic and abiotic stresses, viz., SOS2 , SOS2 like , NPR1 , FAE1-KCS , HOT5 , DNAJA1 , NIA1 , BRI1 , RF21 , y cf2 , WRKY33 , PAL , SAMS2 , orf147 , MAPK3 , WRR1  and SUS , were reported in the genomic regions of identified QTLs. Conclusions The significance of B. carinata in improving drought tolerance and WUE by introducing genomic segments in Indian mustard is well demonstrated. The findings also provide valuable insights into the genetic basis of drought tolerance in mustard and pave the way for the development of drought-tolerant varieties.