Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2
result(s) for
"dual-channel biometric identification system"
Sort by:
Convolutional Neural Network Approach Based on Multimodal Biometric System with Fusion of Face and Finger Vein Features
2022
In today’s information age, how to accurately identify a person’s identity and protect information security has become a hot topic of people from all walks of life. At present, a more convenient and secure solution to identity identification is undoubtedly biometric identification, but a single biometric identification cannot support increasingly complex and diversified authentication scenarios. Using multimodal biometric technology can improve the accuracy and safety of identification. This paper proposes a biometric method based on finger vein and face bimodal feature layer fusion, which uses a convolutional neural network (CNN), and the fusion occurs in the feature layer. The self-attention mechanism is used to obtain the weights of the two biometrics, and combined with the RESNET residual structure, the self-attention weight feature is cascaded with the bimodal fusion feature channel Concat. To prove the high efficiency of bimodal feature layer fusion, AlexNet and VGG-19 network models were selected in the experimental part for extracting finger vein and face image features as inputs to the feature fusion module. The extensive experiments show that the recognition accuracy of both models exceeds 98.4%, demonstrating the high efficiency of the bimodal feature fusion.
Journal Article
Finger Vein Identification Based on Large Kernel Convolution and Attention Mechanism
2024
FV (finger vein) identification is a biometric identification technology that extracts the features of FV images for identity authentication. To address the limitations of CNN-based FV identification, particularly the challenge of small receptive fields and difficulty in capturing long-range dependencies, an FV identification method named Let-Net (large kernel and attention mechanism network) was introduced, which combines local and global information. Firstly, Let-Net employs large kernels to capture a broader spectrum of spatial contextual information, utilizing deep convolution in conjunction with residual connections to curtail the volume of model parameters. Subsequently, an integrated attention mechanism is applied to augment information flow within the channel and spatial dimensions, effectively modeling global information for the extraction of crucial FV features. The experimental results on nine public datasets show that Let-Net has excellent identification performance, and the EER and accuracy rate on the FV_USM dataset can reach 0.04% and 99.77%. The parameter number and FLOPs of Let-Net are only 0.89M and 0.25G, which means that the time cost of training and reasoning of the model is low, and it is easier to deploy and integrate into various applications.
Journal Article