Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
273 result(s) for "dust extraction"
Sort by:
Theoretical and Experimental Studies of Uneven Dust Suction from a Multi-Cyclone Settling Tank in a Two-Stage Air Filter
In this paper, the uneven air stream distribution problem of individual cyclones is studied in the multi-cyclones of intake air filters in special vehicles’ engines. This problem increases in multi-cyclones, in which several dozen cyclones have a common dust trap from which the collected dust is continuously removed by ejection suction. The aim of this study is the recognition of the theoretical and experimental possibility of reducing the streams’ unevenness, which should result in an efficiency increase in multi-cyclone separation. The methods that led to obtaining a relative stream uniformity from the suction of individual cyclones was analyzed. The method for creating equal pressure drops between the suction streams in the channels was used to achieve this goal. For this purpose, the internal structure of the multi-cyclone settler was changed. The multi-cyclone settling tank space was divided by vertical partitions into independent segments. The settling tank segment was then divided with horizontal shelves into suction channels of different heights, which were assigned a specific number of individual cyclones. The suction channels’ height was theoretically selected in terms of the equal resistance to air stream flow through the channels. For this purpose, the multi-cyclone dust settler segment model was developed. The theoretically determined suction channel’s height was verified by performing experimental flow tests in four (A, B, C, D) dust settler variants. Suction streams of satisfactory uniformity from the cyclones of the variant D settling tank were obtained at a level of 5%. In the next stage, experimental tests of the segment cyclones were carried out with dust before and after the division into suction channels of variant D for the settling tank. A significant increase was achieved from 93.73% to 96.08% in the cyclones’ separation efficiency, which were located as far away from the suction stub as possible and led to a reduction in the non-uniformity of cyclone efficiency in the segment. It follows that the multi-cyclone dust settling segment’s internal structure change gave the expected results.
Discrete Elemental Parameter Calibration of Stacking Behavior of Sugarcane Tail Leaf Sieved Material
To improve the accuracy of discrete element simulation parameters of sugarcane tail-leaf (STL) feed during dust removal and crushing, this study used a combination of physical tests and EDEM software simulations to calibrate the discrete element simulation parameters of crumbs and dust in the feed. Taking the experimental physical stacking angle (SA) as the response value, the second-order regression models of SA and significant factors were established by Plackett-Burman test, steepest climb test, and Box-Behnken test. Variance analysis and interaction effect analysis were conducted. Taking the accumulation angle of 41.27° obtained by physical experiments as the target value, the significant parameters were optimized. The optimal combination of the following parameters was obtained: tail stem-dust static friction coefficient (SFC) of 0.46, tail leaf-dust coefficient of sliding friction (COSF) of 0.205, JKR surface energy of 0.26, and dust-steel collision recovery coefficient (CRC) of 0.338. Through software simulation verification, the average value was 40.81°, and the relative error of the SA with the physical experiment was 1.13%. The results showed that the calibrated parameters are real and reliable, which can provide a theoretical reference for the design optimization of the straw crushing device, feed processing device, and other related components.
Research on the Cumulative Dust Suppression Effect of Foam and Dust Extraction Fan at Continuous Miner Driving Face
The heading face is one of the zones most severely affected by dust pollution in underground coal mines, and dust control becomes even more challenging during roadway excavation with continuous miners. To improve dust mitigation in environments characterized by intense dust generation, high ventilation demand, and large cross-sectional areas, this study integrates numerical simulations, laboratory experiments, and field tests to investigate the physicochemical properties of dust, airflow distribution, dust migration behavior, and a comprehensive dust control strategy combining airflow regulation, foam suppression, and dust extraction fan systems. The results show that dust dispersion patterns differ markedly between the left-side advancement and right-side advancement of the roadway; however, the wind return side of the continuous miner consistently exhibits the highest dust concentrations. The most effective purification of dust-laden airflow is achieved when the dust extraction fan delivers an airflow rate of 500 m3/min and is positioned behind the continuous miner on the return side. After optimization of foam flow rate and coverage based on the cutting head structure of the continuous miner, the dust suppression efficiency reached 78%. With coordinated optimization and on-site implementation of wall-mounted ducted airflow control, foam suppression, and dust extraction fan systems, the total dust reduction rate at the heading face reached 95.2%. These measures substantially enhance dust control effectiveness, improving mine safety and protecting worker health. The resulting reduction in dust concentration also improves visibility for underground intelligent equipment and provides practical guidance for industrial application.
Discrete elemental parameter calibration of stacking behavior of sugarcane tail leaf sieved material
To improve the accuracy of discrete element simulation parameters of sugarcane tail-leaf (STL) feed during dust removal and crushing, this study used a combination of physical tests and EDEM software simulations to calibrate the discrete element simulation parameters of crumbs and dust in the feed. Taking the experimental physical stacking angle (SA) as the response value, the second-order regression models of SA and significant factors were established by Plackett-Burman test, steepest climb test, and Box-Behnken test. Variance analysis and interaction effect analysis were conducted. Taking the accumulation angle of 41.27° obtained by physical experiments as the target value, the significant parameters were optimized. The optimal combination of the following parameters was obtained: tail stem-dust static friction coefficient (SFC) of 0.46, tail leaf-dust coefficient of sliding friction (COSF) of 0.205, JKR surface energy of 0.26, and dust-steel collision recovery coefficient (CRC) of 0.338. Through software simulation verification, the average value was 40.81°, and the relative error of the SA with the physical experiment was 1.13%. The results showed that the calibrated parameters are real and reliable, which can provide a theoretical reference for the design optimization of the straw crushing device, feed processing device, and other related components.
Parameter Stress Response Prediction for Vehicle Dust Extraction Fan Impeller Based on Feedback Neural Network
Vehicles exhibit complex failure modes and mechanisms because of their extreme service environments and severe external loads. The increasing level of integration in these vehicles is also driving more stringent reliability requirements, but conventional methods for reliability analysis require significant calculations, necessitating the use of surrogate models. At present, in the field of the reliability analysis of vehicle dust extraction impellers, although there are various research methods, the research on using surrogate models for relevant analysis is still not perfect. In particular, there are few studies specifically focused on dust extraction impellers. This study established a three-dimensional finite element parametric model of one such fan to simulate the impeller blade stress output for 500 parameter sets. The feedback neural network, backpropagation neural network, and quadratic polynomial response surface were subsequently used as surrogate models to learn the relationship between the parameters and output responses in these data. Comparisons of the results indicated that the feedback neural network exhibited the highest accuracy when predicting the stress responses of the dust extraction fan impeller to changes in parameter values. Through a comparative analysis of multiple surrogate models, this study determined the advantages of the feedback neural network in predicting the impeller stress response. It provides a more efficient and accurate method for reliability analysis in this field and helps to promote the development of reliability research on vehicle filtration systems.
Feasibility of New Dust-Free Coke Discharge Units
The physical processes in coke discharge from the furnace chambers of coke batteries are briefly considered. The basic operating problems of dust-free discharge units are identified, and recommendations are made for their elimination. Design requirements for dust-free coke discharge units in terms of economic efficiency and environmental safety are derived by analysis of operational experience. Some promising designs are considered.
Wood coating dust emission in the Malaysian furniture industry: A case study
The objectives of this study were to evaluate the current dust extraction efficiency used in the Malaysian furniture industry and also the effectiveness of using engineered nanoparticle (ENP)-added coatings to reduce dust emission in the wood finishing operation. This study was in response to the enforcement of the Clean Air Regulation (2014), which requires significant improvements in the air quality and the work environment in the wood-based industry in Malaysia. A series of sanding experiments with different abrasive grit sizes and different coating types were conducted to determine the dust emission levels. The results suggested that higher capture velocity of 30 m/s was necessary to effectively capture the wood coating dust emitted. Further, ENP-added wood coatings did not differ markedly from conventional coatings with regard to dust emission characteristics. The study also revealed that total dust concentration had an inverse relationship, while the amount of finer dust particles was linearly related to the coating film hardness. Therefore, to comply with the Clean Air Regulation, the Malaysian furniture industry needs to significantly improve its dust extraction system.
Pure Electric Sweeper Performance Analysis and Test Verification of Dust Extraction Port
Purely electric sweepers are widely used in the urban sanitation industry due to their emission-free nature and ease of miniaturisation. The dust suction port is the key to the dust suction system of the sweeper, and improving the design level of the dust suction port of the sweeper can effectively improve the operational performance of the sweeper. Using the company’s self-developed Ruiqing S26 pure electric sweeper as the research object, a CFD (Computational Fluid Dynamics) method was used to analyse the influence of the dust suction port structure parameters (front baffle tilt angle, outlet diameter) and sweeper operation parameters (driving speed, operating pressure) on the dust suction effect of the sweeper, and was verified through real vehicle tests. The results of the study show that changing the angle and outlet diameter results in a change in the flow field characteristics and, consequently, the same change in the removal efficiency, with 65° and 160 mm being the optimum angle and outlet diameter, respectively. The tests investigated the flow field characteristics of the dust extraction opening and the removal efficiency. This study can provide theoretical reference for performance optimisation and parameter matching of the sweeper.
An Evaluation of On-Tool System for Sanding Dust Collection: Pilot Study
Hazards identification is essential step in framework of occupational health & safety (OH&S) management system. The task of spruce wood sanding with hand-held power belt sander is considered as a significant resource of exposure to wood dust. Dust from spruce wood is hazard that can cause negative health effects such as asthma and chronic bronchitis. A dust collection box is a commonly used technical measure for reducing exposure to wood dust for this task in practice. The objective of this pilot study was to evaluate the effectiveness of commercially available dust collection box at reducing exposure to wood dust during the task of sanding spruce wood using hand-held power belt sander. Laboratory experiment involved sanding spruce planks (250 mm × 50 mm × 500 mm) in longitudinal direction using belt sander (Bosch, PBS 75 A) with 120 grit sanding belt. Spruce dust mass concentrations were sampled using an aerosol monitor (TSI Inc., DustTrak DRX 8533) in the breathing zone of operator. Inhalable and respirable dust concentrations were both significantly lower (P < 0.0001) when dust box was attached to belt sander compared with sander without a dust box. Results from this pilot study indicate that dust collection box is efficient technical measure for decreasing exposure to aerosol mass concentration during sanding spruce wood with hand-held belt sander.
Efficiency Increase of Wet Gas Cleaning from Dispersed Admixtures by the Application of Ultrasonic Fields
The article presents the results of research aimed at increase of the efficiency of gas cleaning equipment based on the Venturi tube using high-intensity ultrasound. The model based on known laws of hydrodynamics of multiphase mediums of dust-extraction in Venturi scrubbers was proposed. Modification of this model taking into account ultrasonic field allows evaluating optimum modes (sound pressure level) and conditions (direction of ultrasonic field, square and number of ultrasonic sources) of ultrasonic influence. It is evaluated that optimum for efficient gas cleaning is the mode of ultrasonic action at the frequency of 22 kHz with sound pressure level of 145. . . 155 dB at the installation of two radiators with area of 0.14 m , four radiators with area of 0.11 m or six radiators with area of 0.08 m at the angle of 45 degrees to the axis of Venturi tube. Numerical calculations showed that realization of ultrasonic action is the most efficient for the reduction (up to 15 times) of the content of fine-dispersed fraction (2 μm and less), which is impossible to extract without ultrasonic action. The received theoretical results were confirmed by industrial testing by typical dust-extraction plant and used as foundations of development of apparatuses with the radiators of various sizes.