Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"eFuels"
Sort by:
Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept
2021
Germany’s energy transition, known as ‘Energiewende’, was always very progressive. However, it came technically to a halt at the question of large-scale, seasonal energy storage for wind and solar, which was not available. At the end of the 2000s, we combined our knowledge of both electrical and process engineering, imitated nature by copying photosynthesis and developed Power-to-Gas by combining water electrolysis with CO2-methanation to convert water and CO2 together with wind and solar power to synthetic natural gas. Storing green energy by coupling the electricity with the gas sector using its vast TWh-scale storage facility was the solution for the biggest energy problem of our time. This was the first concept that created the term ‘sector coupling’ or ‘sectoral integration’. We first implemented demo sites, presented our work in research, industry and ministries, and applied it in many macroeconomic studies. It was an initial idea that inspired others to rethink electricity as well as eFuels as an energy source and energy carrier. We developed the concept further to include Power-to-Liquid, Power-to-Chemicals and other ways to ‘convert’ electricity into molecules and climate-neutral feedstocks, and named it ‘Power-to-X’at the beginning of the 2010s.
Journal Article
Integration of Genome-Scale Metabolic Model with Biorefinery Process Model Reveals Market-Competitive Carbon-Negative Sustainable Aviation Fuel Utilizing Microbial Cell Mass Lipids and Biogenic CO2
by
Steven W. Singer
,
Corinne D. Scown
,
Deepanwita Banerjee
in
biomass sorghum
,
carbon capture and utilization
,
efuels
2024
Producing scalable, economically viable, low-carbon biofuels or biochemicals hinges on more efficient bioconversion processes. While microbial conversion can offer robust solutions, the native microbial growth process often redirects a large fraction of carbon to CO2 and cell mass. By integrating genome-scale metabolic models with techno-economic and life cycle assessment models, this study analyzes the effects of converting cell mass lipids to hydrocarbon fuels, and CO2 to methanol on the facility’s costs and life-cycle carbon footprint. Results show that upgrading microbial lipids or both microbial lipids and CO2 using renewable hydrogen produces carbon-negative bisabolene. Additionally, on-site electrolytic hydrogen production offers a supply of pure oxygen to use in place of air for bioconversion and fuel combustion in the boiler. To reach cost parity with conventional jet fuel, renewable hydrogen needs to be produced at less than $2.2 to $3.1/kg, with a bisabolene yield of 80% of the theoretical yield, along with cell mass and CO2 yields of 22 wt% and 54 wt%, respectively. The economic combination of cell mass, CO2, and bisabolene yields demonstrated in this study provides practical insights for prioritizing research, selecting suitable hosts, and determining necessary engineered production levels.
Journal Article
Integration of genome-scale metabolic model with biorefinery process model reveals market-competitive carbon-negative sustainable aviation fuel utilizing microbial cell mass lipids and biogenic CO2
by
Banerjee, Deepanwita
,
Baral, Nawa Raj
,
Simmons, Blake A.
in
09 BIOMASS FUELS
,
biomass sorghum
,
carbon capture and utilization
2024
Producing scalable, economically viable, low-carbon biofuels or biochemicals hinges on more efficient bioconversion processes. While microbial conversion can offer robust solutions, the native microbial growth process often redirects a large fraction of carbon to CO2 and cell mass. By integrating genome-scale metabolic models with techno-economic and life cycle assessment models, this study analyzes the effects of converting cell mass lipids to hydrocarbon fuels, and CO2 to methanol on the facility’s costs and life-cycle carbon footprint. Results show that upgrading microbial lipids or both microbial lipids and CO2 using renewable hydrogen produces carbon-negative bisabolene. Additionally, on-site electrolytic hydrogen production offers a supply of pure oxygen to use in place of air for bioconversion and fuel combustion in the boiler. To reach cost parity with conventional jet fuel, renewable hydrogen needs to be produced at less than$2.2 to $ 3.1/kg, with a bisabolene yield of 80% of the theoretical yield, along with cell mass and CO2 yields of 22 wt% and 54 wt%, respectively. The economic combination of cell mass, CO2, and bisabolene yields demonstrated in this study provides practical insights for prioritizing research, selecting suitable hosts, and determining necessary engineered production levels.
Journal Article
The Energy Situation in the Federal Republic of Germany: Analysis of the Current Situation and Perspectives for a Non-Fossil Energy Supply
by
Türck, Julian
,
Türck, Ralf
,
Atzler, Frank
in
Air pollution
,
Alternative energy sources
,
Analysis
2023
Formulating energy policies at national, European, and global levels is extremely challenging. The move away from fossil fuels is associated with a variety of technological, economic, and social implications, each of which is subject to dynamic changes and societal scrutiny and can hardly be predicted with certainty. Therefore, a fact-based assessment for the path to a sustainable green energy future is sought out in this paper, using the road-based mobility sector of the Federal Republic of Germany as an example. The analysis performed in this paper is built on publicly accessible, reputable sources like DESTATIS and EUROSTAT. In addition, some very simple calculations were made, e.g., on the potential for wind and photovoltaic energy within Germany. Such an analysis needs to start with the overall energy consumption of any one country. A basic assumption of the paper is that the energy system of the future will be based to a large extent on electricity and its storage in chemical energy. It is assumed that, in addition to hydrogen, liquid energy sources will play a significant role due to the simplicity of their logistics and the subsequent implications on cost. Examples of green, electricity-based fuels with great potential are methanol, methane, and ammonia. Additionally, biomass plays an important role, either for direct use as a fuel or as a source of non-fossil carbon. Today, biofuels, i.e., biodiesel and bioethanol, deliver the largest contribution to climate protection in the EU transport sector. The main goal—the reduction of greenhouse gas emissions—often collides with geopolitical circumstances or national political necessities. This includes, for example, the current world market situation and its national impacts caused by the Russian attack on Ukraine. The prospect for a green, sustainable, and defossilized energy supply are discussed in this context. The paper concludes that a defossilized world energy supply and trade based on renewable electricity and its derivatives, eHydrogen and refuels, and on biomass, is feasible.
Journal Article
Techno-Economic Comparison of Low-Carbon Energy Carriers Based on Electricity for Air Mobility
by
Jarin, Jean-Baptiste
,
Haritchabalet, Carole
,
Beddok, Stéphane
in
Aeronautics
,
air mobility
,
Aircraft
2024
The decarbonization of air mobility requires the decarbonization of its energy. While biofuels will play an important role, other low-carbon energy carriers based on electricity are considered, such as battery electrification and liquid hydrogen (LH2) or eFuel, a hydrogen-based energy carrier. Each energy carrier has its own conversion steps and losses and its own integration effects with aircraft. These combinations lead to different energy requirements and must be understood in order to compare their cost and CO2 emissions. Since they are all electricity-based, this study compares these energy carriers using the well-to-rotor methodology when applied to a standard vertical take-off and landing (VTOL) air mobility mission. This novel approach allows one to understand that the choice of energy carrier dictates the propulsive system architecture, leading to integration effects with aircraft, which can significantly change the energy required for the same mission, increasing it from 400 to 2665 kWh. These deviations led to significant differences in CO2 emissions and costs. Battery electrification is impacted by battery manufacturing but has the lowest electricity consumption. This is an optimum solution, but only until the battery weight can be lifted. In all scenarios, eFuel is more efficient than LH2. We conclude that using the most efficient molecule in an aircraft can compensate for the extra energy cost spent on the ground. Finally, we found that, for each of these energy carriers, it is the electricity carbon intensity and price which will dictate the cost and CO2 emissions of an air mobility mission.
Journal Article