Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
519 result(s) for "ecdysis"
Sort by:
Symbiotic bracovirus of a parasite modulate host ecdysis process
Parasitoids modulate host development for the survival of their offspring, but the mechanisms underlying this phenomenon remain largely unknown. Here, we found that the endoparasitoid Cotesia vestalis disrupted the larval-larval ecdysis in its host Plutella xylostella by the 20-hydroxyecdysone (20E) synthesis pathway. After parasitization by C. vestalis , the 20E peak of host larvae disappeared before the onset of ecdysis and the expression of ecdysone synthesis genes was significantly downregulated. We further found that a Cotesia vestalis bracovirus (CvBV) gene CvBV_28 − 5 was transiently high-level expressed prior to the host’s 20E peak, enabling the precise suppression of this critical developmental signal. Consistently, the knockdown of CvBV_28 − 5 affected the expression of 20E response transcription factors in the cuticle and several ecdysis-related genes. Furthermore, we found that CvBV_28 − 5 bound directly to the Raf, a MAP3K member of the MAPK pathwaythat functions as a critical regulator of ecdysone synthesis genes in hosts. Collectively, our results provide the first evidence that parasitoids modulate host ecdysis by affecting MAPK-20E signaling during a defined developmental window and provide novel insights into the mechanism of parasitoid regulation of host development.
Endocrine network essential for reproductive success in Drosophila melanogaster
Ecdysis-triggering hormone (ETH) was originally discovered and characterized as a molt termination signal in insects through its regulation of the ecdysis sequence. Here we report that ETH persists in adult Drosophila melanogaster, where it functions as an obligatory allatotropin to promote juvenile hormone (JH) production and reproduction. ETH signaling deficits lead to sharply reduced JH levels and consequent reductions of ovary size, egg production, and yolk deposition in mature oocytes. Expression of ETH and ETH receptor genes is in turn dependent on ecdysone (20E). Furthermore, 20E receptor knockdown specifically in Inka cells reduces fecundity. Our findings indicate that the canonical developmental roles of 20E, ETH, and JH during juvenile stages are repurposed to function as an endocrine network essential for reproductive success.
Central peptidergic ensembles associated with organization of an innate behavior
At the end of each developmental stage, insects perform the ecdysis sequence, an innate behavior necessary for shedding the old cuticle. Ecdysis triggering hormones (ETHs) initiate these behaviors through direct actions on the CNS. Here, we identify the ETH receptor (ETHR) gene in the moth Manduca sexta, which encodes two subtypes of GPCR (ETHR-A and ETHR-B). Expression of ETHRs in the CNS coincides precisely with acquisition of CNS sensitivity to ETHs and behavioral competence. ETHR-A occurs in diverse networks of neurons, producing both excitatory and inhibitory neuropeptides, which appear to be downstream signals for behavior regulation. These peptides include allatostatins, crustacean cardioactive peptide (CCAP), calcitonin-like diuretic hormone, CRF-like diuretic hormones (DHs) 41 and 30, eclosion hormone, kinins, myoinhibitory peptides (MIPs), neuropeptide F, and short neuropeptide F. In particular, cells L3,4 in abdominal ganglia coexpress kinins, DH41, and DH30, which together elicit the fictive preecdysis rhythm. Neurons IN704 in abdominal ganglia coexpress CCAP and MIPs, whose joint actions initiate the ecdysis motor program. ETHR-A also is expressed in brain ventromedial cells, whose release of EH increases excitability in CCAP/MIP neurons. These findings provide insights into how innate, centrally patterned behaviors can be orchestrated via recruitment of peptide cotransmitter neurons.
The Intricate Role of Ecdysis Triggering Hormone Signaling in Insect Development and Reproductive Regulation
Insect growth is interrupted by molts, during which the insect develops a new exoskeleton. The exoskeleton confers protection and undergoes shedding between each developmental stage through an evolutionarily conserved and ordered sequence of behaviors, collectively referred to as ecdysis. Ecdysis is triggered by Ecdysis triggering hormone (ETH) synthesized and secreted from peripheral Inka cells on the tracheal surface and plays a vital role in the orchestration of ecdysis in insects and possibly in other arthropod species. ETH synthesized by Inka cells then binds to ETH receptor (ETHR) present on the peptidergic neurons in the central nervous system (CNS) to facilitate synthesis of various other neuropeptides involved in ecdysis. The mechanism of ETH function on ecdysis has been well investigated in holometabolous insects such as moths Manduca sexta and Bombyx mori, fruit fly Drosophila melanogaster, the yellow fever mosquito Aedes aegypti and beetle Tribolium castaneum etc. In contrast, very little information is available about the role of ETH in sequential and gradual growth and developmental changes associated with ecdysis in hemimetabolous insects. Recent studies have identified ETH precursors and characterized functional and biochemical features of ETH and ETHR in a hemimetabolous insect, desert locust, Schistocerca gregaria. Recently, the role of ETH in Juvenile hormone (JH) mediated courtship short-term memory (STM) retention and long-term courtship memory regulation and retention have also been investigated in adult male Drosophila. Our review provides a novel synthesis of ETH signaling cascades and responses in various insects triggering diverse functions in adults and juvenile insects including their development and reproductive regulation and might allow researchers to develop sustainable pest management strategies by identifying novel compounds and targets.
The circadian clock gates Drosophila adult emergence by controlling the timecourse of metamorphosis
The daily rhythm of adult emergence of holometabolous insects is one of the first circadian rhythms to be studied. In these insects, the circadian clock imposes a daily pattern of emergence by allowing or stimulating eclosion during certain windows of time and inhibiting emergence during others, a process that has been described as “gating.” Although the circadian rhythm of insect emergence provided many of the key concepts of chronobiology, little progress has been made in understanding the bases of the gating process itself, although the term “gating” suggests that it is separate from the developmental process of metamorphosis. Here, we follow the progression through the final stages of Drosophila adult development with single-animal resolution and show that the circadian clock imposes a daily rhythmicity to the pattern of emergence by controlling when the insect initiates the final steps of metamorphosis itself. Circadian rhythmicity of emergence depends on the coupling between the central clock located in the brain and a peripheral clock located in the prothoracic gland (PG), an endocrine gland whose only known function is the production of the molting hormone, ecdysone. Here, we show that the clock exerts its action by regulating not the levels of ecdysone but that of its actions mediated by the ecdysone receptor. Our findings may also provide insights for understanding the mechanisms by which the daily rhythms of glucocorticoids are produced in mammals, which result from the coupling between the central clock in the suprachiasmatic nucleus and a peripheral clock located in the suprarenal gland.
Stereotyped responses of Drosophila peptidergic neuronal ensemble depend on downstream neuromodulators
Neuropeptides play a key role in the regulation of behaviors and physiological responses including alertness, social recognition, and hunger, yet, their mechanism of action is poorly understood. Here, we focus on the endocrine control ecdysis behavior, which is used by arthropods to shed their cuticle at the end of every molt. Ecdysis is triggered by ETH (Ecdysis triggering hormone), and we show that the response of peptidergic neurons that produce CCAP (crustacean cardioactive peptide), which are key targets of ETH and control the onset of ecdysis behavior, depends fundamentally on the actions of neuropeptides produced by other direct targets of ETH and released in a broad paracrine manner within the CNS; by autocrine influences from the CCAP neurons themselves; and by inhibitory actions mediated by GABA. Our findings provide insights into how this critical insect behavior is controlled and general principles for understanding how neuropeptides organize neuronal activity and behaviors. Most behaviors occur only under specific circumstances: we eat when we are hungry, for example. But how does the nervous system decide when to start or stop a particular behavior? Molecules called neuropeptides are thought to play a key role in these decisions. Neuropeptides are produced by organs throughout the body and also by the nervous system itself. When neuropeptides act on neurons responsible for a particular behavior – such as feeding – they can inform those neurons about conditions elsewhere in the body and the brain. This enables the nervous system to decide whether to start or stop the behavior. Yet, how the signals from the different neuropeptides are integrated is poorly understood. As immature insects grow, they regularly molt then shed their outer skeleton – or cuticle – in a process called ecdysis. This requires a series of behaviors to occur in a particular order. The old cuticle is first loosened and shed, and then the new cuticle expands and hardens. A number of neuropeptides control ecdysis: for example, a key neuropeptide called ecdysis-triggering hormone (ETH) triggers the process. However, it was not clear how each of the other neuropeptides that are released at this time contributes to the behaviors involved in ecdysis. By studying ecdysis in developing fruit flies, Mena et al. now show that the various ecdysial neuropeptides work together to produce the precise behaviors that are observed. For instance, the effect that ETH has on the nervous system depends on whether another neuropeptide called eclosion hormone is also present. ETH can therefore cause different behavioral outcomes depending on the actions of the other neuropeptides. Further work is needed in order to work out exactly how the nervous system integrates information from different neuropeptides. Do certain neurons respond to specific neuropeptide combinations? It also remains to be seen how different insects are able to use the same neuropeptides to control ecdysis despite their different body shapes.
A diecast mineralization process forms the tough mantis shrimp dactyl club
Biomineralization, the process by which mineralized tissues grow and harden via biogenic mineral deposition, is a relatively lengthy process in many mineral-producing organisms, resulting in challenges to study the growth and biomineralization of complex hard mineralized tissues. Arthropods are ideal model organisms to study biomineralization because they regularly molt their exoskeletons and grow new ones in a relatively fast timescale, providing opportunities to track mineralization of entire tissues. Here, we monitored the biomineralization of the mantis shrimp dactyl club—a model bioapatite-based mineralized structure with exceptional mechanical properties—immediately after ecdysis until the formation of the fully functional club and unveil an unusual development mechanism. A flexible membrane initially folded within the club cavity expands to form the new club’s envelope. Mineralization proceeds inwards by mineral deposition from this membrane, which contains proteins regulating mineralization. Building a transcriptome of the club tissue and probing it with proteomic data, we identified and sequenced Club Mineralization Protein 1 (CMP-1), an abundant mildly phosphorylated protein from the flexible membrane suggested to be involved in calcium phosphate mineralization of the club, as indicated by in vitro studies using recombinant CMP-1. This work provides a comprehensive picture of the development of a complex hard tissue, from the secretion of its organic macromolecular template to the formation of the fully functional club.
Pupal behavior emerges from unstructured muscle activity in response to neuromodulation in Drosophila
Identifying neural substrates of behavior requires defining actions in terms that map onto brain activity. Brain and muscle activity naturally correlate via the output of motor neurons, but apart from simple movements it has been difficult to define behavior in terms of muscle contractions. By mapping the musculature of the pupal fruit fly and comprehensively imaging muscle activation at single-cell resolution, we here describe a multiphasic behavioral sequence in Drosophila . Our characterization identifies a previously undescribed behavioral phase and permits extraction of major movements by a convolutional neural network. We deconstruct movements into a syllabary of co-active muscles and identify specific syllables that are sensitive to neuromodulatory manipulations. We find that muscle activity shows considerable variability, with sequential increases in stereotypy dependent upon neuromodulation. Our work provides a platform for studying whole-animal behavior, quantifying its variability across multiple spatiotemporal scales, and analyzing its neuromodulatory regulation at cellular resolution. How do we find out how the brain works? One way is to use imaging techniques to visualise an animal’s brain in action as it performs simple behaviours: as the animal moves, parts of its brain light up under the microscope. For laboratory animals like fruit flies, which have relatively small brains, this lets us observe their brain activity right down to the level of individual brain cells. The brain directs movements via collective activity of the body’s muscles. Our ability to track the activity of individual muscles is, however, more limited than our ability to observe single brain cells: even modern imaging technology still cannot monitor the activity of all the muscle cells in an animal’s body as it moves about. Yet this is precisely the information that scientists need to fully understand how the brain generates behaviour. Fruit flies perform specific behaviours at certain stages of their life cycle. When the fly pupa begins to metamorphose into an adult insect, it performs a fixed sequence of movements involving a set number of muscles, which is called the pupal ecdysis sequence. This initial movement sequence and the rest of metamorphosis both occur within the confines of the pupal case, which is a small, hardened shell surrounding the whole animal. Elliott et al. set out to determine if the fruit fly pupa’s ecdysis sequence could be used as a kind of model, to describe a simple behaviour at the level of individual muscles. Imaging experiments used fly pupae that were genetically engineered to produce an activity-dependent fluorescent protein in their muscle cells. Pupal cases were treated with a chemical to make them transparent, allowing easy observation of their visually ‘labelled’ muscles. This yielded a near-complete record of muscle activity during metamorphosis. Initially, individual muscles became active in small groups. The groups then synchronised with each other over the different regions of the pupa’s body to form distinct movements, much as syllables join to form words. This synchronisation was key to progression through metamorphosis and was co-ordinated at each step by specialised nerve cells that produce or respond to specific hormones. These results reveal how the brain might direct muscle activity to produce movement patterns. In the future, Elliott et al. hope to compare data on muscle activity with comprehensive records of brain cell activity, to shed new light on how the brain, muscles, and other factors work together to control behaviour.
Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas
Background Ecdysis is an innate behaviour programme by which all arthropods moult their exoskeletons. The complex suite of interacting neuropeptides that orchestrate ecdysis is well studied in insects, but details of the crustacean ecdysis cassette are fragmented and our understanding of this process is comparatively crude, preventing a meaningful evolutionary comparison. To begin to address this issue we identified transcripts coding for neuropeptides and their putative receptors in the central nervous system (CNS) and Y-organs (YO) within the crab, Carcinus maenas, and mapped their expression profiles across accurately defined stages of the moult cycle using RNA-sequencing. We also studied gene expression within the epidermally-derived YO, the only defined role for which is the synthesis of ecdysteroid moulting hormones, to elucidate peptides and G protein-coupled receptors (GPCRs) that might have a function in ecdysis. Results Transcriptome mining of the CNS transcriptome yielded neuropeptide transcripts representing 47 neuropeptide families and 66 putative GPCRs. Neuropeptide transcripts that were differentially expressed across the moult cycle included carcikinin, crustacean hyperglycemic hormone-2, and crustacean cardioactive peptide, whilst a single putative neuropeptide receptor, proctolin R1, was differentially expressed. Carcikinin mRNA in particular exhibited dramatic increases in expression pre-moult, suggesting a role in ecdysis regulation. Crustacean hyperglycemic hormone-2 mRNA expression was elevated post- and pre-moult whilst that for crustacean cardioactive peptide, which regulates insect ecdysis and plays a role in stereotyped motor activity during crustacean ecdysis, was elevated in pre-moult. In the YO, several putative neuropeptide receptor transcripts were differentially expressed across the moult cycle, as was the mRNA for the neuropeptide, neuroparsin-1. Whilst differential gene expression of putative neuropeptide receptors was expected, the discovery and differential expression of neuropeptide transcripts was surprising. Analysis of GPCR transcript expression between YO and epidermis revealed 11 to be upregulated in the YO and thus are now candidates for peptide control of ecdysis. Conclusions The data presented represent a comprehensive survey of the deduced C. maenas neuropeptidome and putative GPCRs. Importantly, we have described the differential expression profiles of these transcripts across accurately staged moult cycles in tissues key to the ecdysis programme. This study provides important avenues for the future exploration of functionality of receptor-ligand pairs in crustaceans.
Development of the salmon louse Lepeophtheirus salmonis parasitic stages in temperatures ranging from 3 to 24°C
The development rate of the salmon louse Lepeophtheirus salmonis is greatly influenced by seawater temperature. This study describes how the growth rate of L. salmonis changes with temperature and identifies the extreme high and low temperatures at which development to the adult stage is compromised. Atlantic salmon Salmo salar were infected with copepodids and development was monitored in 8 temperature groups spanning 3 to 24°C until the lice were adults. Development was severely compromised at 3 and 24°C, while the lice developed normally in the temperature range from 6 to 21°C. At 6°C, most female lice had become adults at 72 d post infection (432 degree-days). At 21°C, development was significantly faster and most females were adults after 13 d, at only 271 degree-days. After infection, lice grew through 5 stages before reaching the adult stage, all of which, with a few exceptions, appeared to last approximately equally long. Thus, a simple model describing the mean daily growth rate (stages per day) as a function of temperature was made for each sex. The relationship between mean daily growth rate and temperature was best described by a second-order polynomial. The term relative age is introduced and used to describe the pattern of development in terms of percent of total development time to the adult stage. This was applied to calculate the timing of developmental events as a function of temperature. Photoperiod and development under rising or decreasing temperatures had minor effects on development rate.