Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
338
result(s) for
"ecg sensors"
Sort by:
Medical-Grade ECG Sensor for Long-Term Monitoring
2020
The recent trend in electrocardiogram (ECG) device development is towards wireless body sensors applied for patient monitoring. The ultimate goal is to develop a multi-functional body sensor that will provide synchronized vital bio-signs of the monitored user. In this paper, we present an ECG sensor for long-term monitoring, which measures the surface potential difference between proximal electrodes near the heart, called differential ECG lead or differential lead, in short. The sensor has been certified as a class IIa medical device and is available on the market under the trademark Savvy ECG. An improvement from the user’s perspective—immediate access to the measured data—is also implemented into the design. With appropriate placement of the device on the chest, a very clear distinction of all electrocardiographic waves can be achieved, allowing for ECG recording of high quality, sufficient for medical analysis. Experimental results that elucidate the measurements from a differential lead regarding sensors’ position, the impact of artifacts, and potential diagnostic value, are shown. We demonstrate the sensors’ potential by presenting results from its various areas of application: medicine, sports, veterinary, and some new fields of investigation, like hearth rate variability biofeedback assessment and biometric authentication.
Journal Article
A Novel Low-Latency and Energy-Efficient Task Scheduling Framework for Internet of Medical Things in an Edge Fog Cloud System
by
Zmij, Petr
,
Nedoma, Jan
,
Matrouk, Khaled
in
Cardiovascular Disease
,
Chronic illnesses
,
Coronaviruses
2022
In healthcare, there are rapid emergency response systems that necessitate real-time actions where speed and efficiency are critical; this may suffer as a result of cloud latency because of the delay caused by the cloud. Therefore, fog computing is utilized in real-time healthcare applications. There are still limitations in response time, latency, and energy consumption. Thus, a proper fog computing architecture and good task scheduling algorithms should be developed to minimize these limitations. In this study, an Energy-Efficient Internet of Medical Things to Fog Interoperability of Task Scheduling (EEIoMT) framework is proposed. This framework schedules tasks in an efficient way by ensuring that critical tasks are executed in the shortest possible time within their deadline while balancing energy consumption when processing other tasks. In our architecture, Electrocardiogram (ECG) sensors are used to monitor heart health at home in a smart city. ECG sensors send the sensed data continuously to the ESP32 microcontroller through Bluetooth (BLE) for analysis. ESP32 is also linked to the fog scheduler via Wi-Fi to send the results data of the analysis (tasks). The appropriate fog node is carefully selected to execute the task by giving each node a special weight, which is formulated on the basis of the expected amount of energy consumed and latency in executing this task and choosing the node with the lowest weight. Simulations were performed in iFogSim2. The simulation outcomes show that the suggested framework has a superior performance in reducing the usage of energy, latency, and network utilization when weighed against CHTM, LBS, and FNPA models.
Journal Article
A Novel Wearable Device for Continuous Ambulatory ECG Recording: Proof of Concept and Assessment of Signal Quality
by
Steinberg, Christian
,
Molin, Franck
,
Roy, Karine
in
Algorithms
,
Arrhythmia
,
Cardiac arrhythmia
2019
Diagnosis of arrhythmic disorders is challenging because of their short-lasting, intermittent character. Conventional technologies of noninvasive ambulatory rhythm monitoring are limited by modest sensitivity. We present a novel form of wearable electrocardiogram (ECG) sensors providing an alternative tool for long-term rhythm monitoring with the potential of increased sensitivity to detect intermittent or subclinical arrhythmia. The objective was to assess the signal quality and R-R coverage of a wearable ECG sensor system compared to a standard 3-lead Holter. In this phase-1 trial, healthy individuals underwent 24-h simultaneous rhythm monitoring using the OMsignal system together with a 3-lead Holter recording. The OMsignal system consists of a garment (bra or shirt) with integrated sensors recording a single-lead ECG and an acquisition module for data storage and processing. Head-to-head signal quality was assessed regarding adequate P-QRS-T distinction and was performed by three electrophysiologists blinded to the recording technology. The accuracy of signal coverage was assessed using Bland-Altman analysis. Fifteen individuals underwent simultaneous 24-h recording. Signal quality and accuracy of the OMgaments was equivalent to Holter-monitoring (84% vs. 93% electrophysiologists rating, p = 0.06). Signal coverage of R-R intervals showed a very close overlay between the OMsignal system and Holter signals, mean difference in heart rate of 2 ± 5 bpm. The noise level of OMgarments was comparable to Holter recording. OMgarments provide high signal quality for adequate rhythm analysis, representing a promising novel technology for long-term non-invasive ECG monitoring.
Journal Article
A Novel Cost-Efficient Framework for Critical Heartbeat Task Scheduling Using the Internet of Medical Things in a Fog Cloud System
by
Mastoi, Qurat-ul-ain
,
Gopal Raj, Ram
,
Ying Wah, Teh
in
Algorithms
,
Calibration
,
Cardiac arrhythmia
2020
Recently, there has been a cloud-based Internet of Medical Things (IoMT) solution offering different healthcare services to wearable sensor devices for patients. These services are global, and can be invoked anywhere at any place. Especially, electrocardiogram (ECG) sensors, such as Lead I and Lead II, demands continuous cloud services for real-time execution. However, these services are paid and need a lower cost-efficient process for the users. In this paper, this study considered critical heartbeat cost-efficient task scheduling problems for healthcare applications in the fog cloud system. The objective was to offer omnipresent cloud services to the generated data with minimum cost. This study proposed a novel health care based fog cloud system (HCBFS) to collect, analyze, and determine the process of critical tasks of the heartbeat medical application for the purpose of minimizing the total cost. This study devised a health care awareness cost-efficient task scheduling (HCCETS) algorithm framework, which not only schedule all tasks with minimum cost, but also executes them on their deadlines. Performance evaluation shows that the proposed task scheduling algorithm framework outperformed the existing algorithm methods in terms of cost.
Journal Article
A robust QRS detection and accurate R-peak identification algorithm for wearable ECG sensors
2021
This paper presents a robust QRS detection algorithm that is capable of detecting QRS complexes as well as accurately identifying R-peaks. The proposed bilateral threshold scheme combined with QRS watchdog greatly improves the detection accuracy and robustness, resulting in consistent detection performance on 9 available ECG databases. Simulations show that the proposed algorithm achieves good results on the datasets from both QTDB healthy database and MITDB arrhythmia database, i.e. the sensitivity of 99.99% and 99.88%, the precision of 99.98% and 99.88%, and the detection error rate of 0.04% and 0.31%, respectively. Furthermore, it also outperforms many existing algorithms on six other ECG databases, such as NSTDB, TWADB, STDB, SVDB, AFTDB, and FANTASIADB.
Journal Article
Wireless Sensors System for Stress Detection by Means of ECG and EDA Acquisition
2020
This paper describes the design of a two channels electrodermal activity (EDA) sensor and two channels electrocardiogram (ECG) sensor. The EDA sensors acquire data on the hands and transmit them to the ECG sensor with wireless WiFi communication for increased wearability. The sensors system acquires two EDA channels to improve the removal of motion artifacts that take place if EDA is measured on individuals who need to move their hands in their activities. The ECG channels are acquired on the chest and the ECG sensor is responsible for aligning the two ECG traces with the received packets from EDA sensors; the ECG sensor sends via WiFi the aligned packets to a laptop for real time plot and data storage. The metrological characterization showed high-level performances in terms of linearity and jitter; the delays introduced by the wireless transmission from EDA to ECG sensor have been proved to be negligible for the present application.
Journal Article
Cardiac Monitoring with Textile Capacitive Electrodes in Driving Applications: Characterization of Signal Quality and RR Duration Accuracy
by
Saidi, Alireza
,
Renaud Dumoulin, Geordi-Gabriel
,
Duverger, James Elber
in
Adult
,
Algorithms
,
automobile
2025
Capacitive ECG sensors in automobiles enable unobtrusive heart rate monitoring as an indicator of a driver’s alertness and health. This paper introduces a capacitive sensor with textile electrodes and provides insights into signal quality and RR duration accuracy. Electrodes of various shapes, sizes, and fabrics were integrated at various positions into the seat back of a driving simulator car seat. Seven subjects completed identical driving circuits with their cardiac signals being recorded simultaneously with textile electrodes and reference Ag-AgCl electrodes. Capacitive ECG signals with observable R peaks (after filtering) could be captured with almost all pairs of textile electrodes, independently of design or placement. Signal quality from textile electrodes was consistently lower compared with reference Ag-AgCl electrodes. Proximity to the heart or even contact with the body seems to be key but not enough to improve signal quality. However, accurate measurement of RR durations was mostly independent of signal quality since 90% of all RR durations measured on capacitive ECG signals had a percentage error below 5% compared to reference ECG signals. Accuracy was actually algorithm-dependent, where a classic Pan–Tompkins-based algorithm was interestingly outperformed by an in-house frequency-domain algorithm.
Journal Article
A Wearable Context-Aware ECG Monitoring System Integrated with Built-in Kinematic Sensors of the Smartphone
by
He, Qingyun
,
He, Yi
,
Li, Ye
in
Accelerometry - instrumentation
,
Accuracy
,
Activities of Daily Living
2015
Continuously monitoring the ECG signals over hours combined with activity status is very important for preventing cardiovascular diseases. A traditional ECG holter is often inconvenient to carry because it has many electrodes attached to the chest and because it is heavy. This work proposes a wearable, low power context-aware ECG monitoring system integrated built-in kinetic sensors of the smartphone with a self-designed ECG sensor. The wearable ECG sensor is comprised of a fully integrated analog front-end (AFE), a commercial micro control unit (MCU), a secure digital (SD) card, and a Bluetooth module. The whole sensor is very small with a size of only 58 × 50 × 10 mm for wearable monitoring application due to the AFE design, and the total power dissipation in a full round of ECG acquisition is only 12.5 mW. With the help of built-in kinetic sensors of the smartphone, the proposed system can compute and recognize user’s physical activity, and thus provide context-aware information for the continuous ECG monitoring. The experimental results demonstrated the performance of proposed system in improving diagnosis accuracy for arrhythmias and identifying the most common abnormal ECG patterns in different activities. In conclusion, we provide a wearable, accurate and energy-efficient system for long-term and context-aware ECG monitoring without any extra cost on kinetic sensor design but with the help of the widespread smartphone.
Journal Article
A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System
2019
This study presents a low-power multi-lead wearable electrocardiogram (ECG) signal sensor system design that can simultaneously acquire the electrocardiograms from three leads, I, II, and V1. The sensor system includes two parts, an ECG test clothing with five electrode patches and an acquisition device. Compared with the traditional 12-lead wired ECG detection instrument, which limits patient mobility and needs medical staff assistance to acquire the ECG signal, the proposed vest-type ECG acquisition system is very comfortable and easy to use by patients themselves anytime and anywhere, especially for the elderly. The proposed study incorporates three methods to reduce the power consumption of the system by optimizing the micro control unit (MCU) working mode, adjusting the radio frequency (RF) parameters, and compressing the transmitted data. In addition, Huffman lossless coding is used to compress the transmitted data in order to increase the sampling rate of the acquisition system. It makes the whole system operate continuously for a long period of time and acquire abundant ECG information, which is helpful for clinical diagnosis. Finally, a series of tests were performed on the designed wearable ECG device. The results have demonstrated that the multi-lead wearable ECG device can collect, process, and transmit ECG data through Bluetooth technology. The ECG waveforms collected by the device are clear, complete, and can be displayed in real-time on a mobile phone. The sampling rate of the proposed wearable sensor system is 250 Hz per lead, which is dependent on the lossless compression scheme. The device achieves a compression ratio of 2.31. By implementing a low power design on the device, the resulting overall operational current of the device is reduced by 37.6% to 9.87 mA under a supply voltage of 2.1 V. The proposed vest-type multi-lead ECG acquisition device can be easily employed by medical staff for clinical diagnosis and is a suitable wearable device in monitoring and nursing the off-ward patients.
Journal Article
Segmentation of the ECG Signal by Means of a Linear Regression Algorithm
by
Aspuru, Javier
,
Félix, Ramón A.
,
Ochoa-Brust, Alberto
in
Algorithms
,
Digital Signal Processing
,
ECG Sensor
2019
The monitoring and processing of electrocardiogram (ECG) beats have been actively studied in recent years: new lines of research have even been developed to analyze ECG signals using mobile devices. Considering these trends, we proposed a simple and low computing cost algorithm to process and analyze an ECG signal. Our approach is based on the use of linear regression to segment the signal, with the goal of detecting the R point of the ECG wave and later, to separate the signal in periods for detecting P, Q, S, and T peaks. After pre-processing of ECG signal to reduce the noise, the algorithm was able to efficiently detect fiducial points, information that is transcendental for diagnosis of heart conditions using machine learning classifiers. When tested on 260 ECG records, the detection approach performed with a Sensitivity of 97.5% for Q-point and 100% for the rest of ECG peaks. Finally, we validated the robustness of our algorithm by developing an ECG sensor to register and transmit the acquired signals to a mobile device in real time.
Journal Article