Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
86,998
result(s) for
"econometrics"
Sort by:
Analysing economic data : a concise introduction
Covering the key issues required for students wishing to understand and analyse the core empirical issues in economics, this text focuses on descriptive statistics, probability concepts and basic econometric techniques.
Machine Learning: An Applied Econometric Approach
by
Spiess, Jann
,
Mullainathan, Sendhil
in
Algorithms
,
Applied econometrics
,
Artificial intelligence
2017
Machines are increasingly doing “intelligent” things. Face recognition algorithms use a large dataset of photos labeled as having a face or not to estimate a function that predicts the presence y of a face from pixels x. This similarity to econometrics raises questions: How do these new empirical tools fit with what we know? As empirical economists, how can we use them? We present a way of thinking about machine learning that gives it its own place in the econometric toolbox. Machine learning not only provides new tools, it solves a different problem. Specifically, machine learning revolves around the problem of prediction, while many economic applications revolve around parameter estimation. So applying machine learning to economics requires finding relevant tasks. Machine learning algorithms are now technically easy to use: you can download convenient packages in R or Python. This also raises the risk that the algorithms are applied naively or their output is misinterpreted. We hope to make them conceptually easier to use by providing a crisper understanding of how these algorithms work, where they excel, and where they can stumble—and thus where they can be most usefully applied.
Journal Article
The State of Applied Econometrics: Causality and Policy Evaluation
2017
In this paper, we discuss recent developments in econometrics that we view as important for empirical researchers working on policy evaluation questions. We focus on three main areas, in each case, highlighting recommendations for applied work. First, we discuss new research on identification strategies in program evaluation, with particular focus on synthetic control methods, regression discontinuity, external validity, and the causal interpretation of regression methods. Second, we discuss various forms of supplementary analyses, including placebo analyses as well as sensitivity and robustness analyses, intended to make the identification strategies more credible. Third, we discuss some implications of recent advances in machine learning methods for causal effects, including methods to adjust for differences between treated and control units in high-dimensional settings, and methods for identifying and estimating heterogenous treatment effects.
Journal Article