Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
14
result(s) for
"ecosystem respiration (ER)"
Sort by:
Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote Sensing Data
2021
Peatlands play an important role in the global carbon cycle as they contain a large soil carbon stock. However, current climate change could potentially shift peatlands from being carbon sinks to carbon sources. Remote sensing methods provide an opportunity to monitor carbon dioxide (CO2) exchange in peatland ecosystems at large scales under these changing conditions. In this study, we developed empirical models of the CO2 balance (net ecosystem exchange, NEE), gross primary production (GPP), and ecosystem respiration (ER) that could be used for upscaling CO2 fluxes with remotely sensed data. Two to three years of eddy covariance (EC) data from five peatlands in Sweden and Finland were compared to modelled NEE, GPP and ER based on vegetation indices from 10 m resolution Sentinel-2 MSI and land surface temperature from 1 km resolution MODIS data. To ensure a precise match between the EC data and the Sentinel-2 observations, a footprint model was applied to derive footprint-weighted daily means of the vegetation indices. Average model parameters for all sites were acquired with a leave-one-out-cross-validation procedure. Both the GPP and the ER models gave high agreement with the EC-derived fluxes (R2 = 0.70 and 0.56, NRMSE = 14% and 15%, respectively). The performance of the NEE model was weaker (average R2 = 0.36 and NRMSE = 13%). Our findings demonstrate that using optical and thermal satellite sensor data is a feasible method for upscaling the GPP and ER of northern boreal peatlands, although further studies are needed to investigate the sources of the unexplained spatial and temporal variation of the CO2 fluxes.
Journal Article
Watershed Land Use and Seasonal Variation Constrain the Influence of Riparian Canopy Cover on Stream Ecosystem Metabolism
2017
Ecosystem metabolism is an important determinant of trophic structure, nutrient cycling, and other critical ecosystem processes in streams. Whereas watershed- and local-scale controls on stream metabolism have been independently investigated, little is known about how controls exerted at different scales interact to determine stream metabolic rates, particularly in urban streams and across seasons. To address this knowledge gap, we measured ecosystem metabolism in four urban and four reference streams in northern Kentucky, USA, with paired closed and open riparian canopies, during each of the four seasons. Gross primary production (GPP), ecosystem respiration, and net ecosystem production (NEP) were all best predicted by models with season as a main effect, but interactions between season, canopy, and watershed varied for each response. Urban streams exhibited higher GPP during most seasons, likely due to elevated nutrient loads. Open canopy reaches in both urban and forested streams, supported higher rates of GPP than the closed canopy which reaches during the summer and fall, when the overhead vegetation shaded the closed reaches. The effect of canopy cover on GPP was similar among urban and forested streams. The combination of watershed and local-scale controls resulted in urban streams that alternated between net heterotrophy (NEP < 0) and net autotrophy (NEP > 0) at the reach-scale during seasons with dense canopy cover. This finding has management relevance because net production can lead to accumulation of algal biomass and associated issues like nighttime hypoxia. Our study suggests that although watershed urbanization fundamentally alters ecosystem function, the preservation and restoration of canopied riparian zones can provide an important management tool at the local scale, with the strongest impacts on stream metabolism during summer.
Journal Article
Drought during canopy development has lasting effect on annual carbon balance in a deciduous temperate forest
by
Sun, Ge
,
Chen, Jiquan
,
McNulty, Steve G
in
Acer
,
Acer - growth & development
,
Acer - metabolism
2008
Climate change projections predict an intensifying hydrologic cycle and an increasing frequency of droughts, yet quantitative understanding of the effects on ecosystem carbon exchange remains limited. Here, the effect of contrasting precipitation and soil moisture dynamics were evaluated on forest carbon exchange using 2 yr of eddy covariance and microclimate data from a 50-yr-old mixed oak woodland in northern Ohio, USA. The stand accumulated 40% less carbon in a year with drought between bud-break and full leaf expansion (354 ± 81 g C m⁻² yr⁻¹ in 2004 and 252 ± 45 g C m⁻² yr⁻¹ in 2005). This was caused by greater suppression of gross ecosystem productivity (GEP; 16% = 200 g) than of ecosystem respiration (ER; 11% = 100 g) by drought. Suppressed GEP was traced to lower leaf area, lower apparent quantum yield and lower canopy conductance. The moisture sensitivity of ER may have been mediated by GEP. The results highlight the vulnerability of the ecosystem to even a moderate drought, when it affects a critical aspect of development. Although the drought was preceded by rain, the storage capacity of the soil seemed limited to 1-2 wk, and therefore droughts longer than this are likely to impair productivity in the region.
Journal Article
Filter-feeders have differential bottom-up impacts on green and brown food webs
2021
Nutrient recycling by consumers can strongly impact nutrient availability for autotrophic and heterotrophic microbes, thus impacting functions such as primary production and decomposition. Filter-feeding freshwater mussels form dense, multispecies assemblages in aquatic ecosystems and have been shown to play a critical role in nutrient cycling. Mussel excretion can enhance benthic primary production and influence algal species composition. However, the role of mussels in brown or detritus-based food webs and species-specific differences has received considerably less attention. Here, using mesocosm experiments, we assessed how three species of freshwater mussels that occupy three different phylogenetic tribes influenced benthic algal accrual, ecosystem metabolism, cotton strip decomposition, leaf litter (Acer saccharum) decomposition, and litter-associated fungal biomass measured as ergosterol. Additionally, we measured mussel excretion and biodeposition rates and assessed the stoichiometry (C:N, C:P, and N:P) of the benthic algae, cotton strips, and leaf litter. In comparison to controls without mussels, generally, mussel treatments had higher benthic algal biomass composed of more diatoms, higher gross primary productivity and net ecosystem production rates, and higher cotton strip tensile strength loss, but there was not a difference in ecosystem respiration rates, leaf litter decomposition rates, or fungal biomass. Benthic algae had lower C:N and higher N:P in mussel treatment tanks and cotton strip C:N was lower in mesocosms with mussels. Our results suggest that nutrient regeneration by mussels most strongly regulates green food webs, with some impacts to brown food webs, suggesting that consumers have interactive effects on microbial functioning in freshwaters.
Journal Article
Interaction of Climate Change and Eutrophication
by
Soons, Merel B.
,
Bennion, Helen
,
Liboriussen, Lone
in
changes in trophic structure
,
denitrification enzyme activity (DEA)
,
ecosystem respiration (ER)
2010
This chapter contains sections titled:
Introduction
Changes in trophic structure
Mesocosm experiments
Stream and wetland experiments at paired sites
Palaeolimnology and modelling
Synthesis
Conclusion
References
Book Chapter
Frontiers and challenges in soil respiration research: from measurements to model-data integration
by
Reichstein, Markus
,
Baldocchi, Dennis D.
,
Carbone, Mariah S.
in
Agricultural soils
,
Animal and plant ecology
,
Animal, plant and microbial ecology
2011
Soil respiration, the flux of CO₂ from the soil to the atmosphere represents a major flux in the global carbon cycle. Our ability to predict this flux remains limited because of multiple controlling mechanisms that interact over different temporal and spatial scales. However, new advances in measurement and analyses present an opportunity for the scientific community to improve the understanding of the mechanisms that regulate soil respiration. In this paper, we address several recent advancements in soil respiration research from experimental measurements and data analysis to new considerations for model-data integration. We focus on the links between the soil-plant-atmosphere continuum at short (i.e., diel) and medium (i.e., seasonal-years) temporal scales. First, we bring attention to the importance of identifying sources of soil CO₂ production and highlight the application of automated soil respiration measurements and isotope approaches. Second, we discuss the need of quality assurance and quality control for applications in time series analysis. Third, we review perspectives about emergent ideas for modeling development and model-data integration for soil respiration research. Finally, we call for stronger interactions between modelers and experimentalists as a way to improve our understanding of soil respiration and overall terrestrial carbon cycling.
Journal Article
Responses of soil respiration and its components to drought stress
2014
PURPOSE: Climate change is likely to increase both intensity and frequency of drought stress. The responses of soil respiration (R ₛ) and its components (root respiration, R ᵣ; mycorrhizal respiration, R ₘ; and heterotrophic respiration, R ₕ) to drought stress can be different. This work aims to review the recent and current literature about the variations in R ₛ during the period of drought stress, to explore potential coupling processes and mechanisms between R ₛ and driving factors in the context of global climate change. RESULTS AND DISCUSSION: The sensitivity of soil respiration and its components to drought stress depended on the ecosystems and seasonality. Drought stress depressed R ₛ in mesic and xeric ecosystems, while it stimulated R ₛ in hydric ecosystems. The reductions in supply and availability of substrate decreased both auto- and heterotrophic respirations, leading to the temporal decoupling of root and mycorrhizal respiration from canopy photosynthesis as well as C allocation. Drought stress also reduced the diffusion of soluble C substrate, and activities of extracellular enzymes, consequently, limited microbial activity and reduced soil organic matter decomposition. Drought stress altered Q ₁₀ values and broke the coupling between temperature and soil respiration. Under drought stress conditions, R ₘ is generally less sensitive to temperature than R ᵣ and R ₕ. Elevated CO₂ concentration alleviated the negative effect of drought stress on soil respiration, principally due to the promotion of plant C assimilation subsequently, which increased substrate supply for respiration in both roots and soil microorganisms. Additionally, rewetting stimulated soil respiration dramatically in most cases, except for soil that experienced extreme drought stress periods. The legacy of drought stress can also regulate the response of soil respiration rate to rewetting events in terrestrial ecosystems through changing abiotic drivers and microbial community structure. CONCLUSIONS AND PERSPECTIVES: There is increasing evidence that drought stress can result in the decoupling of the above- and belowground processes, which are associated with soil respiration. However, studies on the variation in rates of soil respiration and its components under different intensities and frequencies of drought stress over the ecosystems should be reinforced. Meanwhile, molecular phylogenetics and functional genomics should be applied to link microbial ecology to the process of R ₛ. In addition, we should quantify the relationship between soil respiration and global change parameters (such as warming and elevated [CO₂]) under drought stress. Models simulating the rates of soil respiration and its components under global climate change and drought stress should also be developed.
Journal Article
Remotely sensed soil moisture integration in an ecosystem carbon flux model. The spatial implication
by
Van Roey, Tom
,
Feyen, Jan
,
Veroustraete, Frank
in
Anthropogenic factors
,
Atmospheric Sciences
,
Carbon
2010
While remote sensing is able to provide spatially explicit datasets at regional to global scales, extensive application to date has been found only in the reporting and verification of ecosystem carbon fluxes under the Kyoto Protocol. One of the problems is that new remote sensing datasets can be used only with models or data assimilation schemes adapted to include a data input interface dedicated to the type and format of these remote sensing datasets. In this study, soil water index data (SWI), derived from the ERS scatterometer (10-daily time period with a spatial resolution of 50 km), are integrated into the ecosystem carbon balance model C-Fix to assess 10-daily Net Ecosystem Productivity (NEP) patterns of Europe from the remote sensing perspective on an approximate 1-by-1 km² pixel scale using NDVI-AVHRR data. The modeling performance of NEP obtained with and without the assimilation of remotely sensed soil moisture data in the carbon flux model C-Fix is evaluated with EUROFLUX data. Results show a general decrease of the RRMSE of up to 11 with an average of 3.46. C-Fix is applied at the European scale to demonstrate the potential of this ecosystem carbon flux model, based on remote sensing inputs. More specifically, the strong impact of soil moisture on the European carbon balance in the context of the Kyoto Protocol (anthropogenic carbon emissions) is indicated at the country level. Results suggest that several European countries shift from being a carbon sink (i.e., NEP > 1) to being a carbon source (i.e., NEP < 0) whether or not short-term water availability (i.e., soil moisture) is considered in C-Fix NEP estimations.
Journal Article