Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "eddy current testing (ECT)"
Sort by:
A Review of Wire Rope Detection Methods, Sensors and Signal Processing Techniques
Wire rope inspection by nondestructive testing methods, sensors and signal processing techniques are mainly reviewed in this paper. Owing to the difference of physical mechanism and testing principles, magnetic flux leakage, eddy current, acoustic emission and ultrasonic guide wave testing as well as other inspection methods for steel wire rope are summarized. Then, the commonly and frequently used testing sensors of inductive coil, hall element, magnetoresistive sensors and others are compared in the perspective of their corresponding operating principles, development situation, advantages and disadvantages. Furthermore, signal processing techniques including the signal filtering techniques such as the time and frequency analysis methods, quantitative data processing methods such as the machine learning and defect classification are studied. Finally, the challenges and future developing trends of wire rope inspection in practical applications are discussed.
Nondestructive Examination of Carbon Fiber-Reinforced Composites Using the Eddy Current Method
This paper presents the results of experiments using the eddy current system designated for nondestructive inspection of carbon fiber-reinforced composites. For this purpose, the eddy current testing system with a differential transducer with two pairs of excitation coils oriented perpendicularly and a central pick-up coil was utilized. The transducer measures the magnetic flux difference flowing through the pick-up coil. The transducer of this design has already been successfully utilized to inspect isotropic metal structures. However, the anisotropy of the composites and their lower conductivity compared to metal components made the transducer parameters adjustment essential. Thus, various excitation frequencies were considered and investigated. The system was evaluated using a sample made of orthogonally woven carbon fiber-reinforced composites with two artificial flaws (the notches with a maximum relative depth of 30% and 70%, respectively, thickness of 0.4 mm, and a length of 5 mm). The main goal was to find a configuration suitable for detecting hidden flaws in such materials.
Locating and Imaging Fiber Breaks in CFRP Using Guided Wave Tomography and Eddy Current Testing
In this paper, guided Lamb wave tomography and eddy current testing (ECT) techniques were combined to locate and evaluate fiber breaks in carbon-fiber-reinforced plastic (CFRP) structures. Guided wave testing (GWT) and computed tomography (CT) imaging were employed to quickly locate fiber breaks in the CFRP plate. From B-scans performed along two different fiber orientations (0 and 90 degrees), parallel-beam projections of different features were extracted from the guided wave signals, using signal-processing techniques (such as wavelet and Hilbert transforms) and statistical functions (such as skewness and kurtosis). The parallel-beam projections of each individual feature were used as input in computed tomography imaging reconstruction to approximately estimate the location of fiber breaks. From the obtained reconstructed images, image-fusion techniques were applied to get complementary information from multiple source images into one single image. After locating the fiber breaks, C-scans were performed in the vicinity of the damage, using an ECT probe with double excitation configuration to evaluate the condition of the fiber break.
Preparation of solenoid probe for Eddy Current Testing technique probe
The most crucial components in the system of eddy currents are the sensitivity of the probe to deliver a signal to detect a defect on the material efficiently. When the turns are closely spaced and the length is substantially more than the radius of the turns, the solenoid is perfect. This paper presents a development of a solenoid probe for the eddy current testing (ECT) technique probe to detect defects. The objectives of this research are to design and construct a high sensitivity rod-shaped solenoid probe, to find the optimal frequency for each metal testing (i.e., Copper (Cu), Aluminium (Al), and Stainless Steel) for this solenoid probe, and to obtain the output testing signals defects with vary of thickness (i.e., 1.5 mm, 3.0mm, and 5.0 mm). In addition, a hole of an artificial defect (i.e., 7.0 mm, 14.0 mm, 21.0 mm) has been drilled on each of the metal testings. This rod-shaped solenoid coil was designed with an iron core with 65 mm length, 5 mm area, and 200 turns. It demonstrates how the rod-shaped solenoid coil may be used to detect various flaws in copper (Cu), aluminium (Al), and stainless steel. The optimal frequencies for copper were 7.850 MHz, Aluminium was 7.383 MHz, and Stainless-Steel metal was 7.956 MHz.
Conductivity Measurement for Non-Magnetic Materials Using Eddy Current Method with a Novel Simplified Model
The eddy current testing (ECT) technique enables efficient and non-destructive conductivity measurement. However, conventional ECT is significantly influenced by the thickness of the material, often resulting in the arbitrary selection of excitation frequency. In addition, complex inverse calculations in the eddy current analytical model pose challenges for practical application. This paper proposes a method for measuring the conductivity of non-ferromagnetic materials based on a simplified analytical model. Firstly, the classical Dodd–Deeds analytical model is simplified based on the electromagnetic properties of materials under high-frequency conditions, resulting in a simplified model that directly relates the coil impedance phase to the material’s conductivity. Furthermore, in combination with a finite element method (FEM) analysis, a frequency selection criterion is proposed, and a corresponding measurement method is developed. This method enables direct conductivity calculation by substituting the measured coil impedance phase into the simplified model. Finally, experiments were conducted to verify the effectiveness of the proposed method. The results demonstrate that the proposed method accurately measures the conductivity of non-ferromagnetic materials over a range of 0.5–58.5 MS/m, achieving absolute and relative errors less than 1.05 MS/m and 1.83%, respectively, without requiring complex inversion calculations or multiple calibrations. This advancement in measurement principles provides a new theoretical foundation and technical pathway for developing online inspection systems and portable instrumentation.
A Precise Oxide Film Thickness Measurement Method Based on Swept Frequency and Transmission Cable Impedance Correction
Accurately measuring the thickness of the oxide film that accumulates on nuclear fuel assemblies is critical for maintaining nuclear power plant safety. Oxide film thickness typically ranges from a few micrometers to several tens of micrometers, necessitating a high-precision measurement system. Eddy current testing (ECT) is commonly employed during poolside inspections due to its simplicity and ease of on-site implementation. The use of swept frequency technology can mitigate the impact of interference parameters and improve the measurement accuracy of ECT. However, as the nuclear assembly is placed in a pool for inspection, a cable several dozen meters in length is used to connect the ECT probe to the instrument. The measurement is affected by the transmission line and its effect is a function of the operating frequencies, resulting in errors for swept frequency measurements. This paper proposes a method for precisely measuring oxide film thickness based on the swept frequency technique and long transmission line impedance correction. The signals are calibrated based on a transmission line model of the cable, effectively eliminating the influence of the transmission cable. A swept frequency signal-processing algorithm is developed to separate the parameters and calculate oxide film thickness. To verify the feasibility of the method, measurements are conducted on fuel cladding samples with varying conductivities. It is found that the method can accurately assess oxide film thickness with varying conductivity. The maximum error is 3.42 μm, while the average error is 1.82 μm. The impedance correction reduces the error by 66%. The experimental results indicate that this method can eliminate the impact of long transmission cables, and the algorithm can mitigate the influence of material conductivity. This method can be utilized to measure oxide film thickness in nuclear power maintenance inspections following extensive testing and engineering optimization.
Resolution Enhanced Array ECT Probe for Small Defects Inspection
It is a continual and challenging problem to detect small defects in metallic structures for array eddy current testing (ECT) probes, which require the probe to have ultra-high resolution and sensitivity. However, the spatial resolution of an ECT array probe is limited by the size of the induction coils. Even if it is possible to increase the spatial resolution by using smaller coils, the sensitivity of the sensor also decreases. To obtain finer spatial resolution without sacrificing sensitivity, this paper proposes a resolution enhanced ECT array probe with four rows of coils attached to a flexible printed circuit board (FPCB). The distance between each two adjacent coils in a row is 2 mm and the position of each row is offset by 0.5 mm along the horizontal direction related to its prior row. The outputs of the four rows are aligned and interpolated in a line, and in this way the image resolution of the probe is increased to 0.5 mm. The probe is configured to operate with the differential setting, namely two differential coils operate simultaneously at each time. The currents in the two coils can be controlled to have the same flowing direction or opposite flowing direction, resulting in different distributions of the induced eddy current and two sets of output images. A patch-image model and an image fusion method based on discrete wavelet transforms are employed to suppress the noise and highlight the defects’ indications. Experimental results show that small defects with dimensions as small as length × width × depth = 1 mm × 0.1 mm × 0.3 mm on a 304 stainless-steel sample can be detected from the fused image, demonstrating that the probe has super sensitivity for small defects inspection.
A Study of the Automated Eddy Current Detection of Cracks in Steel Plates
Applying life estimation approaches to determine in-service life of structures and plan the inspection schedules accordingly are becoming acceptable safety design procedures in aerospace. However, these design systems shall be fed with reliable parameters related to material properties, loading conditions and defect characteristics. In this context, the role of non-destructive (NDT) testing reliability is of high importance in detecting and sizing defects. Eddy current test (ECT) is an electromagnetic NDT method frequently used to inspect tiny surface fatigue cracks in sensitive industries. Owing to the new advances in robotic technologies, there is a trend to integrate the ECT into automated systems to perform NDT inspections more efficiently. In fact, ECT can be effectively automated as to increase the coverage, repeatability and scanning speed. The reliability of ECT scanning, however, should be thoroughly investigated and compared to conventional modes of applications to obtain a better understanding of the advantages and shortcomings related to this technique. In this contribution, a series of manual and automated ECT tests are carried out on a set of samples using a split-D reflection differential surface probe. The study investigates the level of noise recorded in each technique and discuss its dependency on different parameters, such as surface roughness and frequency. Afterwards, a description of the effect of crack orientation on ECT signal amplitude is provided through experimental tests and finite element simulations. Finally, the reliability of each ECT technique is investigated by means of probability of detection (POD) curves. POD parameters are then extracted and compared to examine the effect of scanning index, frequency and automation on detection reliability.
Backside Defect Evaluation in Carbon Steel Plate Using a Hybridized Magnetic Flux Leakage and Eddy Current Technique
The challenges inherent in effective nondestructive evaluation of backside defects in steel, such as cracks, arise from the limited penetration of eddy currents (EC) due to the high permeability of steel. While the magnetic flux leakage (MFL) technique is able to detect deep defects, it lacks detailed geometry information. In this study, a hybrid approach is proposed, involving the simultaneous analysis of MFL and EC signals using a custom-designed magnetic probe. The probe is developed based on Finite Element Method simulations, followed by validation on 2 mm carbon steel plates containing artificial slits. The simulation results showed that the spatial and intensity responses of MFL and EC signals within the slits can be utilized for characterizing the slits. Furthermore, validation with fabricated backside slits confirms the correlation between slit depth, length and the intensity of the measured signals, particularly when an optimized excitation frequency is employed. The proposed method enables the prediction of slit depth and identification of slit shapes, thereby resulting in an enhancement of backside defect detection capabilities. Through this proposed hybrid technique, a connection is established between MFL and EC methods to enable a versatile tool for the precise assessment of cracks.
Relative Density Measurement of PBF-Manufactured 316L and AlSi10Mg Samples via Eddy Current Testing
Powder bed fusion (PBF) is the most commonly used additive manufacturing process for fabricating complex metal parts via the layer-wise melting of powder. Despite the tremendous recent technological development of PBF, manufactured parts still lack consistent quality in terms of part properties such as dimensional accuracy, surface roughness, or relative density. In addition to process-inherent variability, this is mainly owing to a knowledge gap in the understanding of process influences and the inability to adequately control them during part production. Eddy current testing (ECT) is a well-established nondestructive testing technique primarily used to detect near-surface defects and measure material properties such as electrical conductivity in metal parts. Hence, it is an appropriate technology for the layer-wise measuring of the material properties of the fused material in PBF. This study evaluates ECT’s potential as a novel in situ monitoring technology for relative part density in PBF. Parts made from SS316L and AlSi10Mg with different densities are manufactured on a PBF machine. These parts are subsequently measured using ECT, as well as the resulting signals correlated with the relative part density. The results indicate a statistically significant and strong correlation (316L: r(8) = 0.998, p < 0.001, AlSi10Mg: r(8) = 0.992, p < 0.001) between relative part density and the ECT signal component, which is mainly affected by the electrical conductivity of the part. The results indicate that ECT has the potential to evolve into an effective technology for the layer-wise measuring of relative part density during the PBF process.