Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,194
result(s) for
"edible coating"
Sort by:
Alginate-Based Edible Films and Coatings for Food Packaging Applications
by
Müller, Kajetan
,
Schmid, Markus
,
Senturk Parreidt, Tugce
in
active ingredients
,
additives
,
Algae
2018
Alginate is a naturally occurring polysaccharide used in the bio industry. It is mainly derived from brown algae species. Alginate-based edible coatings and films attract interest for improving/maintaining quality and extending the shelf-life of fruit, vegetable, meat, poultry, seafood, and cheese by reducing dehydration (as sacrificial moisture agent), controlling respiration, enhancing product appearance, improving mechanical properties, etc. This paper reviews the most recent essential information about alginate-based edible coatings. The categorization of alginate-based coatings/film in food packaging concept is formed gradually with the explanation of the most important titles. Emphasis will be placed on active ingredients incorporated into alginate-based formulations, edible coating/film application methods, research and development studies of coated food products and mass transfer and barrier characteristics of the alginate-based coatings/films. Future trends are also reviewed to identify research gaps and recommend new research areas. The summarized information presented in this article will enable researchers to thoroughly understand the fundamentals of the coating process and to develop alginate-based edible films and coatings more readily.
Journal Article
Smart and UV-Resistant Edible Coating and Films Based on Alginate, Whey Protein, and Curcumin
by
Ummartyotin, Sarute
,
Botalo, Atcharaporn
,
Vatthanakul, Suteera
in
Alginates
,
Ammonia
,
Antimicrobial agents
2024
In this work, smart edible coating and films with excellent UV barrier properties were prepared from alginate, whey protein isolate, and curcumin. The primary focus of this investigation centered on assessing the impact of whey protein and curcumin on the physical and functional properties of the alginate films. Whey protein reduced the film transparency while simultaneously enhancing the hydrophobicity and antioxidant properties of the alginate film. Curcumin imparted a yellow hue to the film, consequently decreasing the transparency of the film. It also substantially improved hydrophobicity, antioxidant activity, and UV-blocking efficiency within the films. Remarkably, curcumin demonstrated a significant reduction in the water vapor transmission rate of the film. For the preservation of apples, a higher concentration of curcumin was required, which effectively suppressed the respiration rate and moisture loss post-harvest, resulting in an extended shelf-life for the apples. As a result, the coated apples exhibited significantly reduced enzymatic browning and weight loss in comparison to their uncoated counterparts. Furthermore, these curcumin-containing films underwent a reversible color change from orange to red when exposed to ammonia vapor. This attribute highlights the potential of the developed coating and film as a smart, active food packaging solution, particularly for light-sensitive food products.
Journal Article
Effect of Edible Coating Enriched with Natural Antioxidant Extract and Bergamot Essential Oil on the Shelf Life of Strawberries
by
Piscopo, Amalia
,
De Bruno, Alessandra
,
Ritorto, Davide
in
antioxidant
,
Antioxidants
,
Ascorbic acid
2023
In this study, the effects of the application of edible coatings on the shelf life of the strawberry were evaluated, with the aim of extending the fruit’s availability and shelf life while preserving its qualitative characteristics. In particular, the application of edible coatings enriched with a natural antioxidant to strawberries was evaluated for their physicochemical, microbial, and structural properties, during a storage period (up to 14 days) at refrigerated temperature. The experimental plan provided the formulation for edible coatings enriched with different concentrations of a natural antioxidant extract obtained from bergamot (Citrus bergamia Risso) pomace (1, 2.5, and 5%), bergamot essential oil (0.1% v/v and 0.2% v/v), and a synthetic antioxidant, butylated hydroxytoluene (BHT, 100 ppm). Moreover, a control test with untreated strawberries was considered. The enriched gum Arabic coatings provided good results related to the preservation of the qualitative parameters of the strawberries. The samples coated with the antioxidant extract (2.5%, sample D) and bergamot essential oil (0.1%, sample F) showed the best maintenance of the qualitative parameters after 14 days, showing lower decay rates (36% D and 27% F), good acceptability by consumers (between 5 and 6), and good retention of ascorbic acid (>30 mg 100 g−1).
Journal Article
The Potential of Edible Films, Sheets, and Coatings Based on Fruits and Vegetables in the Context of Sustainable Food Packaging Development
by
Nowacka, Małgorzata
,
Janowicz, Monika
,
Galus, Sabina
in
Agricultural production
,
Autoimmune diseases
,
Biopolymers
2023
Several consumable substances, including fruit and vegetable purees, extracts, juices, and plant residue, were analyzed for their matrix-forming potential. These matrices serve as the basis for the production of edible films, sheets, and coatings that can be eaten as nutritional treats or applied to food products, thereby contributing to their overall good quality. Furthermore, this innovative approach also contributes to optimizing the performance of synthetic packaging, ultimately reducing reliance on synthetic polymers in various applications. This article explores the viability of incorporating fruits and vegetables as basic ingredients within edible films, sheets, and coatings. The utilization of fruits and vegetables in this manner becomes achievable due to the existence of polysaccharides and proteins that facilitate the formation of matrices in their makeup. Moreover, including bioactive substances like vitamins and polyphenols can impart attributes akin to active materials, such as antioxidants or antimicrobial agents. Advancing the creation of edible films, sheets, and coatings derived from fruits and vegetables holds great potential for merging the barrier and mechanical attributes of biopolymers with the nutritional and sensory qualities inherent in these natural components. These edible films made from fruits and vegetables could potentially serve as alternatives to seaweed in sushi production or even replace conventional bread, pancakes, tortillas, and lavash in the diet of people suffering from celiac disease or gluten allergy, while fruit and vegetable coatings may be used in fresh and processed food products, especially fruits and vegetables but also sweets.
Journal Article
The Effects of a Gum Arabic-Based Edible Coating on Guava Fruit Characteristics during Storage
by
Abdein, Mohamed A.
,
Hassan, Khairy H. A.
,
Mahmoud, Mohamed H.
in
Antimicrobial agents
,
Antioxidants
,
Cold storage
2022
Guava is a nutritious fruit that has perishable behavior during storage. We aimed to determine the influences of some edible coatings (namely, cactus pear stem (10%), moringa (10%), and henna leaf (3%) extracts incorporated with gum Arabic (10%)), on the guava fruits’ properties when stored under ambient and refrigeration temperatures for 7, 14, and 21 days. The results revealed that the coating with gum Arabic (10%) only, or combined with the natural plant extracts, exhibited a significant reduction in weight loss, decay, and rot ratio. Meanwhile, there were notable increases in marketability. Moreover, among all tested treatments, the application of gum Arabic (10%) + moringa extract (10%) was the superior treatment for most studied parameters, and exhibited for the highest values for maintaining firmness, total soluble solids, total sugars, and total antioxidant activity. Overall, it was suggested that coating guava with 10% gum Arabic combined with other plant extracts could maintain the postharvest storage quality of the cold-storage guava.
Journal Article
Polysaccharide-Based Edible Biopolymer-Based Coatings for Fruit Preservation: A Review
by
Pillai, Athira R. S.
,
Roy, Swarup
,
Eapen, Ansu Sara
in
anti-infective agents
,
Antimicrobial agents
,
apples
2024
Over the last decades, a significant rise in fruit consumption has been noticed as they contain numerous nutritional components, which has led to the rise in fruit production globally. However, fruits are highly liable to spoilage in nature and remain vulnerable to losses during the storage and preservation stages. Therefore, it is crucial to enhance the storage life and safeness of fruits for the consumers. To keep up the grade and prolong storage duration, various techniques are employed in the food sector. Among these, biopolymer coatings have gained widespread acceptance due to their improved characteristics and ideal substitution for synthetic polymer coatings. As there is concern regarding the safety of the consumers and sustainability, edible coatings have become a selective substitution for nurturing fruit quality and preventing decay. The application of polysaccharide-based edible coatings offers a versatile solution to prevent the passage of moisture, gases, and pathogens, which are considered major threats to fruit deterioration. Different polysaccharide substances such as chitin, pectin, carrageenan, cellulose, starch, etc., are extensively used for preparing edible coatings for a wide array of fruits. The implementation of coatings provides better preservation of the fruits such as mango, strawberry, pineapple, apple, etc. Furthermore, the inclusion of functional ingredients, including polyphenols, natural antioxidants, antimicrobials, and bio-nanomaterials, into the edible coating solution matrix adds to the nutritional, functional, and sensory attributes of the fruits. The blending of essential oil and active agents in polysaccharide-based coatings prevents the growth of food-borne pathogens and enhances the storage life of the pineapple, also improving the preservation of strawberries and mangoes. This paper aims to provide collective data regarding the utilization of polysaccharide-based edible coatings concerning their characteristics and advancements for fruit preservation.
Journal Article
Postharvest chitosan-arginine nanoparticles application ameliorates chilling injury in plum fruit during cold storage by enhancing ROS scavenging system activity
2022
Background
Plum (
Prunus domestica
L.) has a short shelf-life period due to its high respiration rate and is sensitive to low storage temperatures, which can lead to the appearance of chilling injury symptoms. In this investigation, we applied new coating treatments based on chitosan (CTS) and arginine (Arg) to plum fruit (cv. ‘Stanley’).
Results
Fruit were treated with distilled water (control), Arg at 0.25 and 0.5 mM, CTS at 1% (w/v) or Arg-coated CTS nanoparticles (CTS-Arg NPs) at 0.5 and 1% (w/v), and then stored at 1 °C for days. The application of CTS-Arg NPs at 0.5% attenuated chilling injury, which was accompanied by accumulation of proline, reduced levels of electrolyte leakage and malondialdehyde, as well as suppressed the activity of polyphenol oxidase. Plums coated with CTS-Arg NPs (0.5%) showed higher accumulation of phenols, flavonoids and anthocyanins, due to the higher activity of phenylalanine ammonia-lyase, which in turn resulted in higher DPPH scavenging capacity. In addition, CTS-Arg NPs (0.5%) treatment delayed plum weight loss and retained fruit firmness and ascorbic acid content in comparison to control fruit. Furthermore, plums treated with CTS-Arg NPs exhibited lower H
2
O
2
accumulation than control fruit due to higher activity of antioxidant enzymes, including CAT, POD, APX and SOD.
Conclusions
The present findings show that CTS-Arg NPs (0.5%) were the most effective treatment in delaying chilling injury and prolonging the shelf life of plum fruit.
Journal Article
Design and Development of an Edible Coating for a Ready-to-Eat Fish Product
2024
The application of chitosan and alginate coatings for a ready-to-eat (RTE) baked fish product was studied. An experimental design was used to investigate the effect of coating a polysaccharide concentration and glycerol addition on the safety (microbial growth) and quality (water loss and lipid oxidation) of an RTE fish product under optimal and abused storage conditions. The results showed that a chitosan coating with 1% (w/v) chitosan in 1% (v/v) acetic acid and 15% (w/w chitosan) glycerol, or a 1% (w/v) alginate coating with no glycerol and no crosslinking, showed the best performance in controlling the tested safety and quality parameters. The desirability method was used to identify the shelf lives of chitosan, alginate, and double-coated RTE products. The chitosan-coated samples showed the best performance with a three-fold shelf-life extension compared to the uncoated products stored at 4 °C. Moreover, the tested coatings demonstrated their ability to provide protective functions under abused storage conditions. These results strongly suggest that edible coatings have significant potential in enhancing the shelf life and safety of ready-to-eat (RTE) fish products.
Journal Article
The Development of a Uniform Alginate-Based Coating for Cantaloupe and Strawberries and the Characterization of Water Barrier Properties
2019
Water loss, gain or transfer results in a decline in the overall quality of food. The aim of this study was to form a uniform layer of sodium alginate-based edible coating (1.25% sodium alginate, 2% glycerol, 0.2% sunflower oil, 1% span 80, 0.2% tween 80, (w/w)) and investigate the effects on the water barrier characteristics of fresh-cut cantaloupe and strawberries. To this end, a uniform and continuous edible film formation was achieved (0.187 ± 0.076 mm and 0.235 ± 0.077 mm for cantaloupe and strawberries, respectively) with an additional immersion step into a calcium solution at the very beginning of the coating process. The coating application was effective in significantly reducing the water loss (%) of the cantaloupe pieces. However, no significant effect was observed in water vapor resistance results and weight change measurements in a climate chamber (80%→60% relative humidity (RH) at 10 °C). External packaging conditions (i.e., closed, perforated, and open) were not significantly effective on water activity (aw) values of cantaloupe, but were effective for strawberry values. In general, the coating application promoted the water loss of strawberry samples. Additionally, the water vapor transmission rate of stand-alone films was determined (2131 g·100 µm/(m2·d·bar) under constant environmental conditions (23 °C, 100%→50% RH) due to the ability to also evaluate the efficacy in ideal conditions.
Journal Article
Improving the Shelf Life of Peeled Fresh Almond Kernels by Edible Coating with Mastic Gum
by
Rusu, Alexandru
,
Farooq, Muhammad
,
Azadfar, Elham
in
Almond
,
Antiinfectives and antibacterials
,
Antioxidants
2021
Coating, as a process in which fruits, vegetables, kernels, and nuts are covered with an edible layer, is an environmentally friendly alternative to plastic wrapping, which has been considered the most effective way to preserve them over the long term. On the other hand, prolonging the shelf life results in a reduction of spoilage and therefore achieving a goal that is very important nowadays—the reduction of food waste. The quality of preserved almonds kernels depends on factors such as grain moisture, storage temperature, relative humidity, oxygen level, packaging, and the shape of the stored nuts (along with being peeled, unpeeled, roasted, etc.). The commercial importance of the almond fruit is related to its kernel. Almonds that are peeled (without the thin brown skin) and stored have a shorter shelf life than unpeeled almonds since the reddish-brown skin, rich in antioxidants, may protect the kernels against oxidation. In this study, a bioactive edible coating has been tested, which may provide an effective barrier against oxygen permeation and moisture, thus preserving the quality of peeled fresh almonds by extending their shelf life. Mastic gum, as a natural coating agent, was used to coat the peeled fresh almond kernels in four different concentrations (0.5%, 1.0%, 1.5%, and 2.0% w/v). The effect of mastic gum coating on the quality parameters of the peeled fresh almonds (moisture uptake, oil oxidation, total yeast and mold growth, and Aspergillus species development) was studied during four months of storage. The results showed that mastic gum, as a coating agent, significantly (p < 0.05) reduced moisture absorption, peroxide and thiobarbituric acid indices, total yeast and mold growth, and Aspergillus species development in the peeled and coated fresh almonds, compared to the control, i.e., uncoated fresh almonds, during 4 months of storage, packed at room temperature (25–27 °C) inside a cabinet at 90% humidity. Therefore, mastic gum can be used as a great natural preservative coating candidate with antioxidant and antimicrobial effects.
Journal Article