Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
163,775 result(s) for "electric current"
Sort by:
Predictive Control of Power Converters and Electrical Drives
<p>The application Model Predictive Control (MPC) controls electrical energy with the use of power converters and offers a highly flexible alternative to the use of modulators and linear controllers. This new approach takes into account the discrete and nonlinear nature of the power converters and drives and promises to have a strong impact on control in power electronics in the coming decades.</p> <p><i>Predictive Control of Power Converters and Electrical Drives</i> provides a comprehensive overview of the general principles and current research into MPC and is ideal for engineers, specialists and researchers needing:&#160;</p> <ul> <li>a straightforward explanation of the theory and implementation of predictive control;</li> <li>analysis on classical converter control methods and electrical drives control methods;</li> <li>application examples and case studies demonstrating how control schemes have been implemented;</li> <li>practice in running their own MATLAB<sup>(R)</sup> simulations through the companion website.</li> </ul> <p>With the information provided, power electronics specialists will be able to start applying this new control technique. This book will help electrical, electronics and control engineers, R&amp;D engineers, product development engineers working in power electronics and drives, and industry engineers of power conversions and motor drives. It is also a complete reference for university researchers, graduate and senior-level undergraduate students of electrical and electronics engineering, academic control specialists, and academics in electrical drives.</p> <p>URL: www.wiley.com/go/rodriguez_control</p>
Modern power electronics and AC drives
\"A clear understanding of power electronics and AC drives is crucially important in a wide range of modern systems, from household appliances to automated factories and it requires cross-disciplinary expertise that many engineers lack. Now, in Modern Power Electronics and AC Drives, one of the world's leading experts covers every aspect of the topic, including crucial innovations such as artificial intelligence, advanced estimation, and sensorless control. This book is not only important as an advanced reference but also covers the material for one senior-level and two graduate-level courses.\"--Jacket.
Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems
<p><i>Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems&nbsp;</i>is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission.</p> <p>Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids.</p> <p>Key features:</p> <ul> <li>Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland.</li> <li>Comprehensive explanation of MMC application in HVDC and MTDC transmission technology.</li> <li>Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore.</li> <li>Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals.</li> <li>A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website.</li> </ul> <p>This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.</p> <div>&nbsp;</div>
High-voltage direct-current transmission : converters, systems and DC grids
This comprehensive reference guides the reader through all HVDC technologies, including LCC (Line Commutated Converter), 2-level VSC and VSC HVDC based on modular multilevel converters (MMC) for an in-depth understanding of converters, system level design, operating principles and modeling. Written in a tutorial style, the book also describes the key principles of design, control, protection and operation of DC transmission grids, which will be substantially different from the practice with AC transmission grids. The first dedicated reference to the latest HVDC technologies and DC grid developments; this is an essential resource for graduate students and researchers as well as engineers and professionals working on the design, modeling and operation of DC grids and HVDC. Key features: Provides comprehensive coverage of LCC, VSC and (half and full bridge) MMC-based VSC technologies and DC transmission grids. Presents phasor and dynamic analytical models for each HVDC technology and DC grids. Includes HVDC protection, studies of DC and AC faults, as well as system-level studies of AC-DC interactions and impact on AC grids for each HVDC technology. Companion website hosts SIMULINK SimPowerSystems models with examples for all HVDC topologies.
High performance control of AC drives with MATLAB/Simulink models
A comprehensive guide to understanding AC machines with exhaustive simulation models to practice design and controlNearly seventy percent of the electricity generated worldwide is used by electrical motors. Worldwide, huge research efforts are being made to develop commercially viable three- and multi-phase motor drive systems that are economically and technically feasible.Focusing on the most popular AC machines used in industry - induction machine and permanent magnet synchronous machine - this book illustrates advanced control techniques and topologies in practice and recently deployed. Examples are drawn from important techniques including Vector Control, Direct Torque Control, Nonlinear Control, Predictive Control, multi-phase drives and multilevel inverters.Key features include:systematic coverage of the advanced concepts of AC motor drives with and without output filter;discussion on the modelling, analysis and control of three- and multi-phase AC machine drives, including the recently developed multi-phase-phase drive system and double fed induction machine;description of model predictive control applied to power converters and AC drives, illustrated together with their simulation models;end-of-chapter questions, with answers and PowerPoint slides available on the companion website www.wiley.com/go/aburub_controlThis book integrates a diverse range of topics into one useful volume, including most the latest developments. It provides an effective guideline for students and professionals on many vital electric drives aspects. It is an advanced textbook for final year undergraduate and graduate students, and researchers in power electronics, electric drives and motor control. It is also a handy tool for specialists and practicing engineers wanting to develop and verify their own algorithms and techniques.
Magnon spintronics
Magnon spintronics is the field of spintronics concerned with structures, devices and circuits that use spin currents carried by magnons. Magnons are the quanta of spin waves: the dynamic eigen-excitations of a magnetically ordered body. Analogous to electric currents, magnon-based currents can be used to carry, transport and process information. The use of magnons allows the implementation of novel wave-based computing technologies free from the drawbacks inherent to modern electronics, such as dissipation of energy due to Ohmic losses. Logic circuits based on wave interference and nonlinear wave interaction can be designed with much smaller footprints compared with conventional electron-based logic circuits. In this review, after an introduction into the basic properties of magnons and their handling, we discuss the inter-conversion between magnon currents and electron-carried spin and charge currents; and concepts and experimental studies of magnon-based computing circuits. Magnons provide a route for information-processing technologies that are free from charge-related dissipations. Advances in the manipulation of magnons, and the conversion to charge currents, bring magnon-based computing closer to realization.