Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
58,456
result(s) for
"electrical signal"
Sort by:
Spatiotemporal variations of seismicity before major earthquakes in the Japanese area and their relation with the epicentral locations
by
Nagao, Toshiyasu
,
Kamogawa, Masashi
,
Varotsos, Panayiotis A.
in
Cluster analysis
,
Earthquakes
,
Estimating techniques
2015
Using the Japan Meteorological Agency earthquake catalog, we investigate the seismicity variations before major earthquakes in the Japanese region. We apply natural time, the new time frame, for calculating the fluctuations, termedβ, of a certain parameter of seismicity, termedκ₁. In an earlier study, we found thatβcalculated for the entire Japanese region showed a minimum a few months before the shallow major earthquakes (magnitude larger than 7.6) that occurred in the region during the period from 1 January 1984 to 11 March 2011. In this study, by dividing the Japanese region into small areas, we carry out theβcalculation on them. It was found that some small areas showβminimum almost simultaneously with the large area and such small areas clustered within a few hundred kilometers from the actual epicenter of the related main shocks. These results suggest that the present approach may help estimation of the epicentral location of forthcoming major earthquakes.
Journal Article
Gradual potential induced by stem bending: Douglas-fir versus poplar
by
Badel, Eric
,
Leblanc-Fournier, Nathalie
,
Van Rooij, Mahaut
in
Action potential
,
Amplitudes
,
Biological effects
2024
Plants live in fluctuating environments and daily experience various mechanical stimuli. Wind-induced stem bending leads to local growth modification, but also induces a remote growth response at a distance from the stimulated zone, suggesting long-distance signaling. In a recent study, we revealed the propagation of an electrical response, named 'gradual potential’ (GP), induced by stem bending in poplar (Populus tremula × alba). Although similar in shape to an action potential (AP), the GP shows original characteristics as a decreasing amplitude with the distance and a high propagation speed (until 200 mm s−1) that also decreases. The mechanisms of generation and propagation of the GP remain unknown. As the differences between AP and GP are mainly based on the speed of signal propagation, we focused in this additional study on the method for estimating GP speed. Furthermore, we tested the genericity of this typical bending-induced electrical response by comparing the effect of stem bending between Douglas-fir and poplar using electrophysiological measurements. In-depth analysis on a large number of biological responses confirmed the high-speed characteristics of GP and its exponential decay pattern. Electrical responses analyses on Douglas-fir showed a GP generation after stem bending. However, inter-specific differences in signal amplitude and damping were revealed suggesting a putative role of the stem anatomical structure of these species on the long-range GP generation and propagation.
Journal Article
Jasmonate action in plant defense against insects
2019
Herbivorous insects represent one of the major threats to sessile plants. To cope with herbivore challenges, plants have evolved sophisticated defense systems, in which the lipid-derived phytohormone jasmonate plays a crucial role. Perception of insect attack locally and systemically elicits rapid synthesis of jasmonate, which is perceived by the F-box protein COI1 to further recruit JAZ repressors for ubiquitination and degradation, thereby releasing transcription factors that subsequently activate plant defense against insect attack. Here, we review recent progress in understanding the molecular basis of jasmonate action in plant defense against insects.
Journal Article
Long-distance plant signaling pathways in response to multiple stressors
by
Bauerle, Taryn L.
,
Huber, Annika E.
in
Plant Physiological Phenomena
,
REVIEW PAPER
,
Signal Transduction
2016
Plants require the capacity for quick and precise recognition of external stimuli within their environment for survival. Upon exposure to biotic (herbivores and pathogens) or abiotic stressors (environmental conditions), plants can activate hydraulic, chemical, or electrical long-distance signals to initiate systemic stress responses. A plant’s stress reactions can be highly precise and orchestrated in response to different stressors or stress combinations. To date, an array of information is available on plant responses to single stressors. However, information on simultaneously occurring stresses that represent either multiple, within, or across abiotic and biotic stress types is nascent. Likewise, the crosstalk between hydraulic, chemical, and electrical signaling pathways and the importance of each individual signaling type requires further investigation in order to be fully understood. The overlapping presence and speed of the signals upon plant exposure to various stressors makes it challenging to identify the signal initiating plant systemic stress/defense responses. Furthermore, it is thought that systemic plant responses are not transmitted by a single pathway, but rather by a combination of signals enabling the transmission of information on the prevailing stressor(s) and its intensity. In this review, we summarize the mode of action of hydraulic, chemical, and electrical long-distance signals, discuss their importance in information transmission to biotic and abiotic stressors, and suggest future research directions.
Journal Article
Improving the Estimation of the Occurrence Time of an Impending Major Earthquake Using the Entropy Change of Seismicity in Natural Time Analysis
by
Toshiyasu Nagao
,
Masashi Kamogawa
,
Nicholas V. Sarlis
in
Additives
,
Analysis
,
Critical phenomena
2023
This article is focused on a new procedure concerning a more accurate identification of the occurrence time of an impending major earthquake (EQ). Specifically, we first recapitulate that, as was recently shown [P. Varotsos et al., Communications in Nonlinear Science and Numerical Simulation 125 (2023) 107370], natural time analysis of seismicity supplemented with the non-additive Tsallis entropy Sq leads to a shortening of the time window of an impending major EQ. This has been shown for the Tohoku mega-EQ of magnitude M9 that occurred in Japan on 11 March 2011, which is the largest event ever recorded in Japan. Here, we also show that such a shortening of the time window of an impending mainshock can be achieved for major, but smaller EQs, of the order of M8 and M7. In particular, the following EQs are treated: the Chiapas M8.2 EQ, which is Mexico’s largest EQ for more than a century that took place on 7 September 2017 near the coast of Chiapas state in Mexico, the 19 September 2017 M7.1 EQ that occurred within the Mexican flat slab, and the M7.1 Ridgecrest EQ on 6 July 2019 in California.
Journal Article
Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration
by
Zhang, Renfeng
,
Qin, Cheng
,
Kong, Weijian
in
Biocompatible Materials - therapeutic use
,
Biological products
,
conductive biomaterials
2023
Spinal cord injury (SCI) treatment represents a major challenge in clinical practice. In recent years, the rapid development of neural tissue engineering technology has provided a new therapeutic approach for spinal cord injury repair. Implanting functionalized electroconductive hydrogels (ECH) in the injury area has been shown to promote axonal regeneration and facilitate the generation of neuronal circuits by reshaping the microenvironment of SCI. ECH not only facilitate intercellular electrical signaling but, when combined with electrical stimulation, enable the transmission of electrical signals to electroactive tissue and activate bioelectric signaling pathways, thereby promoting neural tissue repair. Therefore, the implantation of ECH into damaged tissues can effectively restore physiological functions related to electrical conduction. This article focuses on the dynamic pathophysiological changes in the SCI microenvironment and discusses the mechanisms of electrical stimulation/signal in the process of SCI repair. By examining electrical activity during nerve repair, we provide insights into the mechanisms behind electrical stimulation and signaling during SCI repair. We classify conductive biomaterials, and offer an overview of the current applications and research progress of conductive hydrogels in spinal cord repair and regeneration, aiming to provide a reference for future explorations and developments in spinal cord regeneration strategies.
Journal Article
The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis
by
Olga Šamajová
,
Jozef Šamaj
,
Andrej Pavlovič
in
action potential
,
carnivores
,
carnivorous plant
2017
The carnivorous sundew plant (Drosera capensis) captures prey using sticky tentacles. We investigated the tentacle and trap reactions in response to the electrical and jasmonate signalling evoked by different stimuli to reveal how carnivorous sundews recognize digestible captured prey in their traps.
We measured the electrical signals, phytohormone concentration, enzyme activities and Chla fluorescence in response to mechanical stimulation, wounding or insect feeding in local and systemic traps. Seven new proteins in the digestive fluid were identified using mass spectrometry.
Mechanical stimuli and live prey induced a fast, localized tentacle-bending reaction and enzyme secretion at the place of application. By contrast, repeated wounding induced a nonlocalized convulsive tentacle movement and enzyme secretion in local but also in distant systemic traps. These differences can be explained in terms of the electrical signal propagation and jasmonate accumulation, which also had a significant impact on the photosynthesis in the traps.
The electrical signals generated in response to wounding could partially mimic a mechanical stimulation of struggling prey and might trigger a false alarm, confirming that the botanical carnivory and plant defence mechanisms are related. To trigger the full enzyme activity, the traps must detect chemical stimuli from the captured prey.
Journal Article
Real‐time, in vivo intracellular recordings of caterpillar‐induced depolarization waves in sieve elements using aphid electrodes
by
Tjallingii, W. Freddy
,
Salvador‐Recatal , Vicenta
,
Farmer, Edward E
in
Amplitude
,
Amplitudes
,
Animals
2014
Plants propagate electrical signals in response to artificial wounding. However, little is known about the electrophysiological responses of the phloem to wounding, and whether natural damaging stimuli induce propagating electrical signals in this tissue. Here, we used living aphids and the direct current (DC) version of the electrical penetration graph (EPG) to detect changes in the membrane potential of Arabidopsis sieve elements (SEs) during caterpillar wounding. Feeding wounds in the lamina induced fast depolarization waves in the affected leaf, rising to maximum amplitude (c. 60 mV) within 2 s. Major damage to the midvein induced fast and slow depolarization waves in unwounded neighbor leaves, but only slow depolarization waves in non‐neighbor leaves. The slow depolarization waves rose to maximum amplitude (c. 30 mV) within 14 s. Expression of a jasmonate‐responsive gene was detected in leaves in which SEs displayed fast depolarization waves. No electrical signals were detected in SEs of unwounded neighbor leaves of plants with suppressed expression of GLR3.3 and GLR3.6. EPG applied as a novel approach to plant electrophysiology allows cell‐specific, robust, real‐time monitoring of early electrophysiological responses in plant cells to damage, and is potentially applicable to a broad range of plant–herbivore interactions.
Journal Article
Jasmonate signalling in carnivorous plants
2019
The lipid-derived jasmonate phytohormones (JAs) regulate a wide spectrum of physiological processes in plants such as growth, development, tolerance to abiotic stresses, and defence against pathogen infection and insect attack. Recently, a new role for JAs has been revealed in carnivorous plants. In these specialized plants, JAs can induce the formation of digestive cavities and regulate enzyme production in response to different stimuli from caught prey. Appearing to be a new function for JAs in plants, a closer look reveals that the signalling pathways involved resemble known signalling pathways from plant defence mechanisms. Moreover, the digestion-related secretome of carnivorous plants is composed of many pathogenesis-related (PR) proteins and low molecular weight compounds, indicating that the plant carnivory syndrome is related to and has evolved from plant defence mechanisms. This review describes the similarities between defence and carnivory. It further describes how, after recognition of caught insects, JAs enable the carnivorous plants to digest and benefit from the prey. In addition, a causal connection between electrical and jasmonate signalling is discussed.
Journal Article
Triggering a false alarm
by
Andrej Pavlovič
,
Ondřej Novák
,
Jana Jakšová
in
Accumulation
,
action potential
,
action potentials
2017
In the carnivorous plant Venus flytrap (Dionaea muscipula), the sequence of events after prey capture resembles the well-known plant defence signalling pathway in response to pathogen or herbivore attack. Here, we used wounding to mimic prey capture to show the similarities and differences between botanical carnivory and plant defence mechanisms.
We monitored movement, electrical signalling, jasmonate accumulation and digestive enzyme secretion in local and distal (systemic) traps in response to prey capture, the mechanical stimulation of trigger hairs and wounding.
The Venus flytrap cannot discriminate between wounding and mechanical trigger hair stimulation. Both induced the same action potentials, rapid trap closure, hermetic trap sealing, the accumulation of jasmonic acid (JA) and its isoleucine conjugate (JA-Ile), and the secretion of proteases (aspartic and cysteine proteases), phosphatases and type I chitinase. The jasmonate accumulation and enzyme secretion were confined to the local traps, to which the stimulus was applied, which correlates with the propagation of electrical signals and the absence of a systemic response in the Venus flytrap.
In contrast to plant defence mechanisms, the absence of a systemic response in carnivorous plant may represent a resource-saving strategy. During prey capture, it could be quite expensive to produce digestive enzymes in the traps on the plant without prey.
Journal Article