Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
44,417 result(s) for "electron density"
Sort by:
Total Root Electron Content: A New Metric for the Ionosphere Below Low Earth Orbiting Satellites
Powerful lightning strikes generate broadband electromagnetic signals. At Extremely Low Frequencies (ELF), the signal partly leaks into the ionosphere and produces whistlers that can be detected by satellites. Indeed, the satellites of the European Space Agency (ESA) Swarm Earth Explorer mission can detect those signals during 250 Hz burst‐mode acquisition campaigns of their Absolute Scalar Magnetometers (ASM). The dispersion of these whistlers depends on their propagation path and the distribution of ionization in the ionosphere crossed along that path. In this paper, we introduce a technique to derive a new measure of ionosphere electron content, the Total square‐Root Electron Content (TREC), using the arrival times of two frequencies of the whistler signal. We validate this approach by using data from ionosondes and from in situ measurements of the electron density at Swarm location. This technique brings new opportunities for sounding the ionosphere in regions poorly observed by other techniques. Plain Language Summary A lightning strike generates an electromagnetic impulse that propagates within Earth's atmosphere and eventually leaks out into the ionosphere. As it propagates through the ionosphere toward low‐Earth orbiting (LEO) satellites, it gets converted into a so‐called whistler, with high frequencies arriving earlier than low frequencies. This frequency dispersion depends on the state of the ionosphere. Here, we analyse such whistler waves detected by magnetometers onboard the European Space Agency Swarm satellites to recover information about the state of the ionosphere below the satellites. We first introduce a new metric, the Total Root Electron Content (TREC), which quantifies the cumulative value of the square root of electron density along the path of the whistler. We next propose a method to recover the TREC from the analysis of the whistler dispersion. We finally validate this method by using independently derived ionospheric electron density profiles to infer expected TREC values. Our results show that whistlers detected by LEO satellites can be used to locally improve the widely used empirical International Reference Ionosphere model. Such whistler inferred TREC values could be used to sound the ionosphere above places difficult to sample with conventional measuring techniques, and help better model and understand the highly dynamic ionosphere. Key Points Total square‐Root Electron Content (TREC) is a new measure of the ionospheric electron content for electromagnetic signals in the ELF band A method to retrieve TREC from fractional‐hop whistlers in the ELF detected by the ESA Swarm mission is proposed The method is validated using TREC computed with independently constrained electron density profiles close to the Swarm whistler locations
Thermospheric Exospheric Temperature and Composition Responses on 15 January 2022 Tonga Volcanic Eruption Based on the Ionosonde Observations
We report thermospheric exospheric temperature and composition responses on the 15 January 2022 Tonga volcanic eruption. The temperature and composition profiles are inversed from three ionosonde (MHJ45, EG931, FF051) observed electron density profiles (∼150–200 km) using our new method (Li, Ren, et al., 2023, https://doi.org/10.1029/2022ja030988). The retrieved exospheric temperatures all showed obvious eruption‐induced perturbations, with maximum disturbance magnitude of ∼200 K at MHJ45 and ∼100 K at EG931 and FF051. The temperature variations were related to eruption‐excited thermospheric waves and their propagation with different speeds. While column ∑O/N2 had no evident changes similar to temperatures, which were basically consistent with GOLD observations. In comparison, higher thermospheric O/N2 has larger eruption‐related changes, maybe due to the exponential increase of thermospheric wave amplitudes with height. The application of our inversion method, combined with continuous observations and global coverage of ionosonde data, provide a possibility to further investigate thermospheric responses to different geophysical conditions. Plain Language Summary Extreme volcanic eruptions and resulted tsunami at 04:14:45 UT on 15 January 2022 generated a series of atmospheric waves, which can propagate out globally and up into the thermosphere. The ionosphere responses on this eruption, relative to thermosphere, have been reported a lot due to the large amounts of ionospheric observations. Here, we used the new method proposed by Li, Ren, et al. (2023), https://doi.org/10.1029/2022ja030988 to inverse daytime thermospheric parameters (neutral temperature and composition) from ionospheric electron density profiles (∼150–200 km). We selected ionosonde data at three stations (MHJ45, EG931, FF051) to verify the thermospheric responses during this eruption. The retrieved temperature at three stations showed the obvious eruption‐induced perturbations, but ∑O/N2 not, which were basically consistent with GOLD observations. However, O/N2 in higher thermosphere had larger eruption‐related changes. The comparison with GOLD observations and observed F2 layer peak electron densities verified the credibility of our inversion method again. Thus, the application of the method to the continuous and high‐covering ionosonde data provides a possibility to further investigate thermospheric responses to different geophysical conditions. Key Points Inversed exospheric temperatures showed obvious eruption‐induced perturbations on the 15 January 2022 Tonga eruption ∑O/N2 had no evident eruption‐induced changes similar to the temperature, neither in our inversion data nor in GOLD observations Ionosonde can expand the understanding of thermospheric responses to different geophysical conditions by our inversion method
Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry
A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.
Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki
After the arrival of Akatsuki spacecraft of Japan Aerospace Exploration Agency at Venus in December 2015, the radio occultation experiment, termed RS (Radio Science), obtained 19 vertical profiles of the Venusian atmosphere by April 2017. An onboard ultra-stable oscillator is used to generate stable X-band downlink signals needed for the experiment. The quantities to be retrieved are the atmospheric pressure, the temperature, the sulfuric acid vapor mixing ratio, and the electron density. Temperature profiles were successfully obtained down to ~ 38 km altitude and show distinct atmospheric structures depending on the altitude. The overall structure is close to the previous observations, suggesting a remarkable stability of the thermal structure. Local time-dependent features are seen within and above the clouds, which is located around 48–70 km altitude. The H 2 SO 4 vapor density roughly follows the saturation curve at cloud heights, suggesting equilibrium with cloud particles. The ionospheric electron density profiles are also successfully retrieved, showing distinct local time dependence. Akatsuki RS mainly probes the low and middle latitude regions thanks to the near-equatorial orbit in contrast to the previous radio occultation experiments using polar orbiters. Studies based on combined analyses of RS and optical imaging data are ongoing. Graphical abstract .
One‐Dimensional Variational Ionospheric Retrieval Using Radio Occultation Bending Angles: 2. Validation
Culverwell et al. (2023, https://doi.org/10.1029/2023SW003572) described a new one‐dimensional variational (1D‐Var) retrieval approach for ionospheric GNSS radio occultation (GNSS‐RO) measurements. The approach maps a one‐dimensional ionospheric electron density profile, modeled with multiple “Vary‐Chap” layers, to bending angle space. This paper improves the computational performance of the 1D‐Var retrieval using an improved background model and validates the approach by comparing with the COSMIC‐2 profile retrievals, based on an Abel Transform inversion, and co‐located (within 200 km) ionosonde observations using all suitable data from 2020. A three or four layer Vary‐Chap in the 1D‐Var retrieval shows improved performance compared to COSMIC‐2 retrievals in terms of percentage error for the F2 peak parameters (NmF2 and hmF2). Furthermore, skill in retrieval (compared to COSMIC‐2 profiles) throughout the bottomside (∼90–300 km) has been demonstrated. With a single Vary‐Chap layer the performance is similar, but this improves by approximately 40% when using four‐layers.
One‐Dimensional Variational Ionospheric Retrieval Using Radio Occultation Bending Angles: 1. Theory
A new one‐dimensional variational (1D‐Var) retrieval method for ionospheric GNSS radio occultation (GNSS‐RO) measurements is described. The forward model implicit in the retrieval calculates the bending angles produced by a one‐dimensional ionospheric electron density profile, modeled with multiple “Vary‐Chap” layers. It is demonstrated that gradient based minimization techniques can be applied to this retrieval problem. The use of ionospheric bending angles is discussed. This approach circumvents the need for Differential Code Bias (DCB) estimates when using the measurements. This new, general retrieval method is applicable to both standard GNSS‐RO retrieval problems, and the truncated geometry of EUMETSAT's Metop Second Generation (Metop‐SG), which will provide GNSS‐RO measurements up to about 600 km above the surface. The climatological a priori information used in the 1D‐Var is effectively a starting point for the 1D‐Var minimization, rather than a strong constraint on the final solution. In this paper the approach has been tested with 143 COSMIC‐1 measurements. We find that the method converges in 135 of the cases, but around 25 of those have high “cost at convergence” values. In the companion paper (Elvidge et al., 2023), a full statistical analysis of the method, using over 10,000 COSMIC‐2 measurements, has been made.
Numerical analysis of electron density and response time delay during solar flares in mid-latitudinal lower ionosphere
Impacts of solar flare vary at different parts of the lower ionosphere depending on it’s proximity to the direct exposure of incoming solar radiation. The quantitative analysis of this phenomena can be attributed to ‘solar zenith angle (χ(t))’ profile over ionosphere. We numerically solve the ‘electron continuity equation’ to obtain the lower ionospheric electron density profile (Ne(t)). The electron production rate (q(t)) is governed by the (i) X-ray profile (ϕ(t)) of the flare, (ii) χ(t)-values during the flare occurrence etc. For analyzing the X-ray profile during flares, we use the GOES-15 satellite observations. Since we’re working on electron continuity equation based simplified ionospheric model, we confined our analysis for comparatively stable mid-latitude ionosphere only. We choose three flares each from C, M and X-classes for Ne(t)-profile computation. We observe that temporal Ne(t)-profiles differ when computed for lower ionosphere over different discrete latitudes. Further, we compute the spatial Ne(t)-profile across mid-latitude at the time when ϕ(t)=ϕmax. Now we assume that, these flares repeat themselves every day of a year (DoY) at the same time of a day and we compute Ne(t)-profiles for each day. We found a seasonal effect on Ne(t)-profile due to solar flare. Further, we investigate the response time delay (Δt) of the lower ionosphere, which is the time difference between incidence of X-ray and the respective change in Ne(t)-profiles during solar flares. Strong seasonal effects on Ne(t)-profile and Δt are the unique results of this work.
Combination of High-Rate Ionosonde Measurements with COSMIC-2 Radio Occultation Observations for Reference Ionosphere Applications
Knowledge of ionospheric plasma altitudinal distribution is crucial for the effective operation of radio wave propagation, communication, and navigation systems. High-frequency sounding radars—ionosondes—provide unbiased benchmark measurements of ionospheric plasma density due to a direct relationship between the frequency of sound waves and ionospheric electron density. But ground-based ionosonde observations are limited by the F2 layer peak height and cannot probe the topside ionosphere. GNSS Radio Occultation (RO) onboard Low-Earth-Orbiting satellites can provide measurements of plasma distribution from the lower ionosphere up to satellite orbit altitudes (~500–600 km). The main goal of this study is to investigate opportunities to obtain full observation-based ionospheric electron density profiles (EDPs) by combining advantages of ground-based ionosondes and GNSS RO. We utilized the high-rate Ebre and El Arenosillo ionosonde observations and COSMIC-2 RO EDPs colocated over the ionosonde’s area of operation. Using two types of ionospheric remote sensing techniques, we demonstrated how to create the combined ionospheric EDPs based solely on real high-quality observations from both the bottomside and topside parts of the ionosphere. Such combined EDPs can serve as an analogy for incoherent scatter radar-derived “full profiles”, providing a reference for the altitudinal distribution of ionospheric plasma density. Using the combined reference EDPs, we analyzed the performance of the International Reference Ionosphere model to evaluate model–data discrepancies. Hence, these new profiles can play a significant role in validating empirical models of the ionosphere towards their further improvements.
Deep Learning-Based Vertical Decomposition of Ionospheric TEC into Layered Electron Density Profiles
This study proposes a deep learning-based vertical decomposition model for ionospheric Total Electron Content (TEC), which establishes a nonlinear mapping from macroscale TEC data to vertically layered electron density (Ne) spanning 60–800 km by integrating geomagnetic indices (AE, SYM-H) and solar activity parameters (F10.7). Utilizing global TEC grid data (spatiotemporal resolution: 1 h/5.625° × 2.8125°) provided by the International GNSS Service (IGS), a Multilayer Perceptron (MLP) model was developed, taking spatiotemporal coordinates, altitude, and space environment parameters as inputs to predict logarithmic electron density ln(Ne). Experimental validation against COSMIC-2 radio occultation observations in 2019 demonstrates the model’s capability to capture ionospheric vertical structures, with a prediction performance significantly outperforming the International Reference Ionosphere model IRI-2020: root mean square error (RMSE) decreased by 34.16%, and the coefficient of determination (R2) increased by 28.45%. This method overcomes the reliance of traditional electron density inversion on costly radar or satellite observations, enabling high-spatiotemporal-resolution global ionospheric profile reconstruction using widely available GNSS-TEC data. It provides a novel tool for space weather warning and shortwave communication optimization. Current limitations include insufficient physical interpretability and prediction uncertainty in GNSS-sparse regions, which could be mitigated in future work through the integration of physical constraints and multi-source data assimilation.
A Molecular Electron Density Theory Study of the Reactivity of Azomethine Imine in 3+2 Cycloaddition Reactions
The electronic structure and the participation of the simplest azomethine imine (AI) in [3+2] cycloaddition (32CA) reactions have been analysed within the Molecular Electron Density Theory (MEDT) using Density Functional Theory (DFT) calculations at the MPWB1K/6-311G(d) level. Topological analysis of the electron localisation function reveals that AI has a pseudoradical structure, while the conceptual DFT reactivity indices characterises this three-atom-component (TAC) as a moderate electrophile and a good nucleophile. The non-polar 32CA reaction of AI with ethylene takes place through a one-step mechanism with moderate activation energy, 8.7 kcal·mol−1. A bonding evolution theory study indicates that this reaction takes place through a non-concerted [2n + 2τ] mechanism in which the C–C bond formation is clearly anticipated prior to the C–N one. On the other hand, the polar 32CA reaction of AI with dicyanoethylene takes place through a two-stage one-step mechanism. Now, the activation energy is only 0.4 kcal·mol−1, in complete agreement with the high polar character of the more favourable regioisomeric transition state structure. The current MEDT study makes it possible to extend Domingo’s classification of 32CA reactions to a new pseudo(mono)radical type (pmr-type) of reactivity.