Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,610
result(s) for
"electron probe data"
Sort by:
An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer
by
Brooker, R. A.
,
Cooper, F. J.
,
Mutch, E. J. F.
in
Aluminum
,
Atmospheric pressure
,
Earth and Environmental Science
2016
We report new experimental data on the composition of magmatic amphiboles synthesised from a variety of granite (sensu lato) bulk compositions at near-solidus temperatures and pressures of 0.8–10 kbar. The total aluminium content (Al
tot
) of the synthetic calcic amphiboles varies systematically with pressure (
P
), although the relationship is nonlinear at low pressures (<2.5 kbar). At higher pressures, the relationship resembles that of other experimental studies, which suggests of a general relationship between Al
tot
and P that is relatively insensitive to bulk composition. We have developed a new Al-in-hornblende geobarometer that is applicable to granitic rocks with the low-variance mineral assemblage: amphibole + plagioclase (An
15–80
) + biotite + quartz + alkali feldspar + ilmenite/titanite + magnetite + apatite. Amphibole analyses should be taken from the rims of grains, in contact with plagioclase and in apparent textural equilibrium with the rest of the mineral assemblage at temperatures close to the haplogranite solidus (725 ± 75 °C), as determined from amphibole–plagioclase thermometry. Mean amphibole rim compositions that meet these criteria can then be used to calculate
P
(in kbar) from Al
tot
(in atoms per formula unit, apfu) according to the expression:
P
kbar
=
0.5
+
0.331
8
×
Al
tot
+
0.995
4
×
Al
tot
2
This expression recovers equilibration pressures of our calibrant dataset, comprising both new and published experimental and natural data, to within ±16 % relative uncertainty. An uncertainty of 10 % relative for a typical Al
tot
value of 1.5 apfu translates to an uncertainty in pressure estimate of 0.5 kbar, or 15 % relative. Thus the accuracy of the barometer expression is comparable to the precision with which near-solidus amphibole rim composition can be characterised.
Journal Article
Experimental evidence for hydrogen incorporation into Earth’s core
2021
Hydrogen is one of the possible alloying elements in the Earth’s core, but its siderophile (iron-loving) nature is debated. Here we experimentally examined the partitioning of hydrogen between molten iron and silicate melt at 30–60 gigapascals and 3100–4600 kelvin. We find that hydrogen has a metal/silicate partition coefficient
D
H
≥ 29 and is therefore strongly siderophile at conditions of core formation. Unless water was delivered only in the final stage of accretion, core formation scenarios suggest that 0.3–0.6 wt% H was incorporated into the core, leaving a relatively small residual H
2
O concentration in silicates. This amount of H explains 30–60% of the density deficit and sound velocity excess of the outer core relative to pure iron. Our results also suggest that hydrogen may be an important constituent in the metallic cores of any terrestrial planet or moon having a mass in excess of ~10% of the Earth.
Based on diamond-anvil cell experiments and cutting-edge secondary ion mass spectrometry analyses, the authors here show that hydrogen may be an important constituent in the Earth’s core and also in the metallic cores of any terrestrial planet or moon having a mass in excess of 10% of the Earth.
Journal Article
A solar wind-derived water reservoir on the Moon hosted by impact glass beads
2023
The past two decades of lunar exploration have seen the detection of substantial quantities of water on the Moon’s surface. It has been proposed that a hydrated layer exists at depth in lunar soils, buffering a water cycle on the Moon globally. However, a reservoir has yet to be identified for this hydrated layer. Here we report the abundance, hydrogen isotope composition and core-to-rim variations of water measured in impact glass beads extracted from lunar soils returned by the Chang’e-5 mission. The impact glass beads preserve hydration signatures and display water abundance profiles consistent with the inward diffusion of solar wind-derived water. Diffusion modelling estimates diffusion timescales of less than 15 years at a temperature of 360 K. Such short diffusion timescales suggest an efficient water recharge mechanism that could sustain the lunar surface water cycle. We estimate that the amount of water hosted by impact glass beads in lunar soils may reach up to 2.7 × 1014 kg. Our direct measurements of this surface reservoir of lunar water show that impact glass beads can store substantial quantities of solar wind-derived water on the Moon and suggest that impact glass may be water reservoirs on other airless bodies.Analysis of lunar soils sampled by the Chang’e-5 mission suggests that impact glass beads may host a substantial inventory of solar wind-derived water on the Moon’s surface.
Journal Article
Volcanic SiO2-cristobalite; a natural product of chemical vapor deposition
by
Conway, Chris
,
Saxey, David W
,
Rickard, William D. A
in
Aluminum
,
Ambient temperature
,
atom probe
2020
Cristobalite is a low-pressure, high-temperature SiO2 polymorph that occurs as a metastable phase in many geologic settings, including as crystals deposited from vapor within the pores of volcanic rocks. Such vapor-phase cristobalite (VPC) has been inferred to result from silica redistribution by acidic volcanic gases but a precise mechanism for its formation has not been established. We address this by investigating the composition and structure of VPC deposited on plagioclase substrates within a rhyolite lava flow, at the micrometer to nanometer scale. The VPC contains impurities of the form [AlO4/Na+]0-coupled substitution of Al3+ charge-balanced by interstitial Na+-which are typical of cristobalite. However, new electron probe microanalysis (EPMA) element maps show individual crystals to have impurity concentrations that systematically decline from crystal cores-to-rims, and atom probe tomography reveals localized segregation of impurities to dislocations. Impurity concentrations are inversely correlated with degrees of crystallinity [observed by electron backscatter diffraction (EBSD), hyperspectral cathodoluminescence, laser Raman, and transmission electron microscopy (TEM)], such that crystal cores are poorly crystalline and rims are highly ordered tetragonal α-cristobalite. The VPC-plagioclase interfaces show evidence that dissolution-reprecipitation reactions between acidic gases and plagioclase crystals yield precursory amorphous SiO2 coatings that are suitable substrates for initial deposition of impure cristobalite. Successive layers of cubic β-cristobalite are deposited with impurity concentrations that decline as Al-bearing gases rapidly become unstable in the vapor cooling within pores. Final cooling to ambient temperature causes a displacive transformation from β→α cristobalite, but with locally expanded unit cells where impurities are abundant. We interpret this mechanism of VPC deposition to be a natural proxy for dopant-modulated Chemical Vapor Deposition, where halogen-rich acidic gases uptake silica, react with plagioclase surfaces to form suitable substrates and then deposit SiO2 as impure cristobalite. Our results have implications for volcanic hazards, as it has been established that the toxicity of crystalline silica is positively correlated with its purity. Furthermore, we note that VPC commonly goes unreported, but has been observed in silicic lavas of virtually all compositions and eruptive settings. We therefore suggest that despite being metastable at Earth's surface, cristobalite may be the most widely occurring SiO2 polymorph in extrusive volcanic rocks and a useful indicator of gas-solid reaction having occurred in cooling magma bodies.
Journal Article
A pristine record of outer Solar System materials from asteroid Ryugu’s returned sample
2022
Volatile and organic-rich C-type asteroids may have been one of the main sources of Earth’s water. Our best insight into their chemistry is currently provided by carbonaceous chondritic meteorites, but the meteorite record is biased: only the strongest types survive atmospheric entry and are then modified by interaction with the terrestrial environment. Here we present the results of a detailed bulk and microanalytical study of pristine Ryugu particles, brought to Earth by the Hayabusa2 spacecraft. Ryugu particles display a close compositional match with the chemically unfractionated, but aqueously altered, CI (Ivuna-type) chondrites, which are widely used as a proxy for the bulk Solar System composition. The sample shows an intricate spatial relationship between aliphatic-rich organics and phyllosilicates and indicates maximum temperatures of ~30 °C during aqueous alteration. We find that heavy hydrogen and nitrogen abundances are consistent with an outer Solar System origin. Ryugu particles are the most uncontaminated and unfractionated extraterrestrial materials studied so far, and provide the best available match to the bulk Solar System composition.
The sample taken from carbonaceous asteroid Ryugu and brought back to Earth by the Hayabusa2 spacecraft contains outer Solar System-derived materials uncontaminated by terrestrial processes. Even CI carbonaceous chondrites, despite their closeness to solar abundances, are not pristine.
Journal Article
Re-evaluating stoichiometric estimates of iron valence in magmatic clinopyroxene crystals
by
McCammon, Catherine
,
Hartley, Margaret E.
,
Stewart, Alexander G.
in
Analytical methods
,
Archives
,
Cations
2024
Clinopyroxene is a major rock forming mineral capable of incorporating diverse metal cations. As a consequence, clinopyroxene preserves valuable archives of magmatic processes. Understanding clinopyroxene is thus essential for understanding Earth’s wider chemical evolution. However, knowledge about the relative abundances of ferrous and ferric iron in magmatic clinopyroxene remains sparse because it is not currently possible to routinely measure the valence of iron in clinopyroxene crystals without either separating single crystals for bulk analysis or securing access to Mössbauer spectroscopy or a synchrotron radiation source to perform in-situ microanalysis. This is despite magmatic clinopyroxene crystals often containing appreciable quantities of ferric iron that affect its stability and behaviour in currently ill-constrained ways and limit our ability to exploit its chemistry to robustly reconstruct conditions of magma storage and evolution. Here we integrate optimised electron probe microanalysis and Mössbauer spectroscopy on endmember and single-crystal clinopyroxene samples to re-evaluate previously discredited approaches for estimating clinopyroxene ferric iron contents by stoichiometry. By ensuring that we measured all major and minor elements in clinopyroxene crystals with sufficient precision, we show that it is possible to readily obtain stoichiometric estimates of clinopyroxene ferric-to-total iron ratios with similar precisions to those derived from Mössbauer spectroscopy (1
σ
∼
3.5% absolute). Being able to robustly determine clinopyroxene ferric iron contents enables us to propose a new empirical scheme for assigning clinopyroxene components that explicitly accounts for ferric iron, which is primarily hosted within esseneite component (CaFe
3
+
AlSiO
6
) in clinopyroxenes dominated by quadrilateral components and aegirine component (NaFe
3
+
Si
2
O
6
) in alkali clinopyroxenes. Our new scheme provides a framework for documenting the full spectrum of clinopyroxene compositions in both natural and experimental systems when analyses are performed with sufficient precision.
Journal Article
Evolution of a hydrothermal ore-forming system recorded by sulfide mineral chemistry: a case study from the Plaka Pb–Zn–Ag Deposit, Lavrion, Greece
2022
Laser ablation-inductively coupled plasma-mass spectrometry and electron-probe microanalysis were used to investigate the trace-element contents of sphalerite, chalcopyrite and pyrite from the Plaka Pb–Zn–Ag deposit. Using petrographic observations, the analytical results could be linked to the temporal evolution of the Plaka ore-forming system. Sphalerite chemistry reliably records the temperature and fS2 evolution of the system, with estimated formation temperatures reproducing the microthermometric results from previous fluid-inclusion studies. Chalcopyrite chemistry also shows systematic variations over time, particularly for Cd, Co, Ge, In, Sn and Zn concentrations. Measurable pyrite was only found in association with early high-temperature mineralisation, and no clear trends could therefore be identified. We note, however, that As and Se contents in pyrite are consistent with formation temperatures estimated from co-existing sphalerite. Statistical analysis of the sphalerite data allowed us to identify the dominant geological controls on its trace-element content. The three investigated factors temperature, fS2, and sample location account for > 80% of the observed variance in Mn, Fe, Co, Ga, Ge, In, Sb and Hg concentrations, and > 60% of the observed variance in Cd and Sn concentrations. Only for Cu and Ag concentrations is the explained variance < 50%. A similarly detailed analysis was not possible for chalcopyrite and pyrite. Nevertheless, comparison of the results for all three investigated minerals indicates that there are some systematic variations across the deposit which may be explained by local differences in fluid composition.
Journal Article
Nanogeochemistry of hydrothermal magnetite
by
Simon, Adam C
,
Deditius, Artur P
,
Rubanov, Sergey
in
Aluminum oxide
,
Apatite
,
Calcium magnesium silicates
2018
Magnetite from hydrothermal ore deposits can contain up to tens of thousands of parts per million (ppm) of elements such as Ti, Si, V, Al, Ca, Mg, Na, which tend to either structurally incorporate into growth and sector zones or form mineral micro- to nano-sized particles. Here, we report micro- to nano-structural and chemical data of hydrothermal magnetite from the Los Colorados iron oxide–apatite deposit in Chile, where magnetite displays both types of trace element incorporation. Three generations of magnetites (X–Z) were identified with concentrations of minor and trace elements that vary significantly: SiO2, from below detection limit (bdl) to 3.1 wt%; Al2O3, 0.3–2.3 wt%; CaO, bdl–0.9 wt%; MgO, 0.02–2.5 wt%; TiO2, 0.1–0.4 wt%; MnO, 0.04–0.2 wt%; Na2O, bdl–0.4 wt%; and K2O, bdl–0.4 wt%. An exception is V2O3, which is remarkably constant, ranging from 0.3 to 0.4 wt%. Six types of crystalline nanoparticles (NPs) were identified by means of transmission electron microscopy in the trace element-rich zones, which are each a few micrometres wide: (1) diopside, (2) clinoenstatite; (3) amphibole, (4) mica, (5) ulvöspinel, and (6) Ti-rich magnetite. In addition, Al-rich nanodomains, which contain 2–3 wt% of Al, occur within a single crystal of magnetite. The accumulation of NPs in the trace element-rich zones suggest that they form owing to supersaturation from a hydrothermal fluid, followed by entrapment during continuous growth of the magnetite surface. It is also concluded that mineral NPs promote exsolution of new phases from the mineral host, otherwise preserved as structurally bound trace elements. The presence of abundant mineral NPs in magnetite points to a complex incorporation of trace elements during growth, and provides a cautionary note on the interpretation of micron-scale chemical data of magnetite.
Journal Article
The effect of pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits
by
Brooker, Richard A.
,
Blundy, Jon D.
,
Matjuschkin, Vladimir
in
Copper
,
Earth and Environmental Science
,
Earth Sciences
2016
Piston cylinder experiments are used to investigate the effect of oxygen fugacity (ƒO
2
) on sulphur speciation and phase relations in arc magmas at 0.5–1.5 GPa and 840–950 °C. The experimental starting composition is a synthetic trachyandesite containing 6.0 wt% H
2
O, 2880 ppm S, 1500 ppm Cl and 3800 ppm C. Redox conditions ranging from 1.7 log units below the Ni–NiO buffer (NNO − 1.7) to NNO + 4.7 were imposed by solid-state buffers: Co–CoO, Ni–NiO, Re–ReO
2
and haematite–magnetite. All experiments are saturated with a COH fluid. Experiments produced crystal-bearing trachydacitic melts (SiO
2
from 60 to 69 wt%) for which major and volatile element concentrations were measured. Experimental results demonstrate a powerful effect of oxidation state on phase relations. For example, plagioclase was stable above NNO, but absent at more reduced conditions. Suppression of plagioclase stability produces higher Al
2
O
3
and CaO melts. The solid sulphur-bearing phases and sulphur speciation in the melt are strong functions of ƒO
2
, as expected, but also of pressure. At 0.5 GPa, the anhydrite stability field is intersected at NNO ≥ +2, but at 1.0 and 1.5 GPa, experiments at the same ƒO
2
produce sulphides and the stability field of sulphate moves towards higher ƒO
2
by ~1 log unit at 1.0 GPa and ~1.5 log units at 1.5 GPa. As a result, models that appeal to high oxidation state as an important control on the mobility of Cu (and other chalcophiles) during crustal differentiation must also consider the enhanced stability of sulphide in deep- to mid-crustal cumulates even for relatively oxidized (NNO + 2) magmas. Experimental glasses reproduce the commonly observed minimum in sulphur solubility between the S
2−
and S
6+
stability fields. The solubility minimum is not related to the Fe content (Fe
2+
/Fe
3+
or total) of the melt. Instead, we propose this minimum results from an unidentified, but relatively insoluble, S-species of intermediate oxidation state.
Journal Article
Variable water input controls evolution of the Lesser Antilles volcanic arc
2020
Oceanic lithosphere carries volatiles, notably water, into the mantle through subduction at convergent plate boundaries. This subducted water exercises control on the production of magma, earthquakes, formation of continental crust and mineral resources. Identifying different potential fluid sources (sediments, crust and mantle lithosphere) and tracing fluids from their release to the surface has proved challenging
1
. Atlantic subduction zones are a valuable endmember when studying this deep water cycle because hydration in Atlantic lithosphere, produced by slow spreading, is expected to be highly non-uniform
2
. Here, as part of a multi-disciplinary project in the Lesser Antilles volcanic arc
3
, we studied boron trace element and isotopic fingerprints of melt inclusions. These reveal that serpentine—that is, hydrated mantle rather than crust or sediments—is a dominant supplier of subducted water to the central arc. This serpentine is most likely to reside in a set of major fracture zones subducted beneath the central arc over approximately the past ten million years. The current dehydration of these fracture zones coincides with the current locations of the highest rates of earthquakes and prominent low shear velocities, whereas the preceding history of dehydration is consistent with the locations of higher volcanic productivity and thicker arc crust. These combined geochemical and geophysical data indicate that the structure and hydration of the subducted plate are directly connected to the evolution of the arc and its associated seismic and volcanic hazards.
Serpentine subducted below the Lesser Antilles volcanic arc supplies water to the arc, controlling the location of seismicity, volcanic productivity and thickness of crust.
Journal Article