Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
244
result(s) for
"electron vortex beam"
Sort by:
Manipulating the topological structure of ultrarelativistic electron beams using Laguerre-Gaussian laser pulse
2018
A method of using intense Laguerre-Gaussian (LG) laser pulse is proposed to generate ultrarelativistic (multi-GeV) electron beams with controllable helical structures based on a hybrid electron acceleration regime in underdense plasmas, where both the longitudinal charge-separation electric field and transverse laser electric field play the role of accelerating the electrons. By directly interacting with the LG laser pulse, the topological structure of the accelerated electron beam is manipulated and it is spatially separated into multi-slice helical bunches. These results are clearly demonstrated by our three-dimensional particle-in-cell simulations and explained by a theoretical model based on electron phase-space dynamics. This novel regime offers a new degree of freedom for manipulating ultrashort and ultrarelativistic electrons, and it provides an efficient way for generating high-energy high-angular-momentum helical electron beams, which may find applications in wide-ranging areas.
Journal Article
The geometric phase and the geometrodynamics of relativistic electron vortex beams
by
Basu, Banasri
,
Chowdhury, Debashree
,
Bandyopadhyay, Pratul
in
Berry Phase
,
Electron Vortex Beam
,
Spin Hall Effect
2014
We have studied here the geometrodynamics of relativistic electron vortex beams from the perspective of the geometric phase associated with the scalar electron encircling the vortex line. It is pointed out that the electron vortex beam carrying orbital angular momentum is a natural consequence of the skyrmion model of a fermion. This follows from the quantization procedure of a fermion in the framework of Nelson's stochastic mechanics when a direction vector (vortex line) is introduced to depict the spin degrees of freedom. In this formalism, a fermion is depicted as a scalar particle encircling a vortex line. It is here shown that when the Berry phase acquired by the scalar electron encircling the vortex line involves quantized Dirac monopole, we have paraxial (non-paraxial) beam when the vortex line is parallel (orthogonal) to the wavefront propagation direction. Non-paraxial beams incorporate spin-orbit interaction. When the vortex line is tilted with respect to the propagation direction, the Berry phase involves non-quantized monopole. The temporal variation of the direction of the tilted vortices is studied here taking into account the renormalization group flow of the monopole charge and it is predicted that this gives rise to the spin Hall effect.
Journal Article
On-Column 2p Bound State with Topological Charge ±1 Excited by an Atomic-Size Vortex Beam in an Aberration-Corrected Scanning Transmission Electron Microscope
2012
Atomic-size vortex beams have great potential in probing the magnetic moment of materials at atomic scales. However, the limited depth of field of vortex beams constrains the probing depth in which the helical phase front is preserved. On the other hand, electron channeling in crystals can counteract beam divergence and extend the vortex beam without disrupting its topological charge. Specifically, in this article, we report that atomic vortex beams with topological charge ±1 can be coupled to the 2p columnar bound states and propagate for more than 50 nm without being dispersed and losing its helical phase front. We give numerical solutions to the 2p columnar orbitals and tabulate the characteristic size of the 2p states of two typical elements, Co and Dy, for various incident beam energies and various atomic densities. The tabulated numbers allow estimates of the optimal convergence angle for maximal coupling to 2p columnar orbital. We have also developed analytic formulae for beam energy, convergence angle, and hologram-dependent scaling for various characteristic sizes. These length scales are useful for the design of pitch-fork apertures and operations of microscopes in the vortex-beam imaging mode.
Journal Article
Structured Electron Beam Illumination: A New Control Over the Electron Probe Weird Probes and New Experiments
by
Venturi, Federico
,
Frabboni, Stefano
,
Grillo, Vincenzo
in
A11 Electron Vortex Beams and Higher-Order Beam Modes
,
Analytical and Instrumentation Science Symposia
,
Electrons
2015
Journal Article