Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,418 result(s) for "elevation gradient"
Sort by:
Microbes follow Humboldt
More than 200 years ago, Alexander von Humboldt reported that tropical plant species richness decreased with increasing elevation and decreasing temperature. Surprisingly, coordinated patterns in plant, bacterial, and fungal diversity on tropical mountains have not yet been observed, despite the central role of soil microorganisms in terrestrial biogeochemistry and ecology. We studied an Andean transect traversing 3.5 km in elevation to test whether the species diversity and composition of tropical forest plants, soil bacteria, and fungi follow similar biogeographical patterns with shared environmental drivers. We found coordinated changes with elevation in all three groups: species richness declined as elevation increased, and the compositional dissimilarity among communities increased with increased separation in elevation, although changes in plant diversity were larger than in bacteria and fungi. Temperature was the dominant driver of these diversity gradients, with weak influences of edaphic properties, including soil pH. The gradients in microbial diversity were strongly correlated with the activities of enzymes involved in organic matter cycling, and were accompanied by a transition in microbial traits towards slower-growing, oligotrophic taxa at higher elevations. We provide the first evidence of coordinated temperature-driven patterns in the diversity and distribution of three major biotic groups in tropical ecosystems: soil bacteria, fungi, and plants. These findings suggest that interrelated and fundamental patterns of plant and microbial communities with shared environmental drivers occur across landscape scales. These patterns are revealed where soil pH is relatively constant, and have implications for tropical forest communities under future climate change.
Decomposition responses to climate depend on microbial community composition
Bacteria and fungi drive decomposition, a fundamental process in the carbon cycle, yet the importance of microbial community composition for decomposition remains elusive. Here, we used an 18-month reciprocal transplant experiment along a climate gradient in Southern California to disentangle the effects of the microbial community versus the environment on decomposition. Specifically, we tested whether the decomposition response to climate change depends on the microbial community. We inoculated microbial decomposers from each site onto a common, irradiated leaf litter within “microbial cages” that prevent microbial exchange with the environment. We characterized fungal and bacterial composition and abundance over time and investigated the functional consequences through litter mass loss and chemistry. After 12 months, microbial communities altered both decomposition rate and litter chemistry. Further, the functional measurements depended on an interaction between the community and its climate in a manner not predicted by current theory. Moreover, microbial ecologists have traditionally considered fungi to be the primary agents of decomposition and for bacteria to play a minor role. Our results indicate that not only does climate change and transplantation have differential legacy effects among bacteria and fungi, but also that bacterial communities might be less functionally redundant than fungi with regards to decomposition. Thus, it may be time to reevaluate both the role of microbial community composition in its decomposition response to climate and the relative roles of bacterial and fungal communities in decomposition.
Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains
Species richness is greatest in the tropics, and much of this diversity is concentrated in mountains. Janzen proposed that reduced seasonal temperature variation selects for narrower thermal tolerances and limited dispersal along tropical elevation gradients [Janzen DH (1967) Am Nat 101:233–249]. These locally adapted traits should, in turn, promote reproductive isolation and higher speciation rates in tropical mountains compared with temperate ones. Here, we show that tropical and temperate montane stream insects have diverged in thermal tolerance and dispersal capacity, two key traits that are drivers of isolation in montane populations. Tropical species in each of three insect clades have markedly narrower thermal tolerances and lower dispersal than temperate species, resulting in significantly greater population divergence, higher cryptic diversity, higher tropical speciation rates, and greater accumulation of species over time. Our study also indicates that tropical montane species, with narrower thermal tolerance and reduced dispersal ability, will be especially vulnerable to rapid climate change.
Influence of climate, soil, and land cover on plant species distribution in the European Alps
Although the importance of edaphic factors and habitat structure for plant growth and survival is known, both are often neglected in favor of climatic drivers when investigating the spatial patterns of plant species and diversity. Yet, especially in mountain ecosystems with complex topography, missing edaphic and habitat components may be detrimental for a sound understanding of biodiversity distribution. Here, we compare the relative importance of climate, soil and land cover variables when predicting the distributions of 2,616 vascular plant species in the European Alps, representing approximately two-thirds of all European flora. Using presence-only data, we built point-process models (PPMs) to relate species observations to different combinations of covariates. We evaluated the PPMs through block cross-validations and assessed the independent contributions of climate, soil, and land cover covariates to predict plant species distributions using an innovative predictive partitioning approach. We found climate to be the most influential driver of spatial patterns in plant species with a relative influence of ~58.5% across all species, with decreasing importance from low to high elevations. Soil (~20.1%) and land cover (~21.4%), overall, were less influential than climate, but increased in importance along the elevation gradient. Furthermore, land cover showed strong local effects in lowlands, while the contribution of soil stabilized at mid-elevations. The decreasing influence of climate with elevation is explained by increasing endemism, and the fact that climate becomes more homogeneous as habitat diversity declines at higher altitudes. In contrast, soil predictors were found to follow the opposite trend. Additionally, at low elevations, human-mediated land cover effects appear to reduce the importance of climate predictors. We conclude that soil and land cover are, like climate, principal drivers of plant species distribution in the European Alps. While disentangling their effects remains a challenge, future studies can benefit markedly by including soil and land cover effects when predicting species distributions.
Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds
Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics.
Contrasting patterns of richness, abundance, and turnover in mountain bumble bees and their floral hosts
Environmental gradients generate and maintain biodiversity on Earth. Mountain slopes are among the most pronounced terrestrial environmental gradients, and the elevational structure of species and their interactions can provide unique insight into the processes that govern community assembly and function in mountain ecosystems. We recorded bumble bee—flower interactions over 3 years along a 1400-m elevational gradient in the German Alps. Using nonlinear modeling techniques, we analyzed elevational patterns at the levels of abundance, species richness, species β-diversity, and interaction β-diversity. Though floral richness exhibited a midelevation peak, bumble bee richness increased with elevation before leveling off at the highest sites, demonstrating the exceptional adaptation of these bees to cold temperatures and short growing seasons. In terms of abundance, though, bumble bees exhibited divergent species-level responses to elevation, with a clear separation between species preferring low versus high elevations. Overall interaction β-diversity was mainly caused by strong turnover in the floral community, which exhibited a well-defined threshold of β-diversity rate at the tree line ecotone. Interaction β-diversity increased sharply at the upper extreme of the elevation gradient (1800–2000 m), an interval over which we also saw steep decline in floral richness and abundance. Turnover of bumble bees along the elevation gradient was modest, with the highest rate of β-diversity occurring over the interval from low- to mid-elevation sites. The contrast between the relative robustness bumble bee communities and sensitivity of plant communities to the elevational gradient in our study suggests that the strongest effects of climate change on mountain bumble bees may be indirect effects mediated by the responses of their floral hosts, though bumble bee species that specialize in high-elevation habitats may also experience significant direct effects of warming.
Variability in functional traits mediates plant interactions along stress gradients
1. Environmental gradients may influence a plant's physiological status and morphology, which in turn may affect plant-plant interactions. However, little is known about the relationship between environmental variation, physiological and morphological variability of plants and variation in the balance between competition and facilitation. 2. Mountain ranges in dry environments have opposing altitudinal environmental gradients of temperature and aridity, which limit plant growth at high and low elevations. This makes them particularly suitable for exploring the relationships between environmental conditions, plant phenotype and plant-plant interactions. We hypothesized that different environmental Stressors will differently affect the physiological status of a nurse plant. This, then, manifests itself as variation in nurse plant morphological traits, which in turn mediates plant-plant interactions by altering microhabitat conditions for the nurse and associated species. 3. In an observational study, we measured a series of functional traits of Arenaria tetraquetra cushions as indicators of its physiological status (e.g. specific leaf area, relative water content) and morphology (e.g. cushion compactness, size). Measurements were taken along the entire elevation range where A. tetraquetra occurs. Furthermore, we analysed how these functional traits related to soil properties beneath cushions and the number of associated species and individuals compared with open areas. 4. Cushions at high elevation showed good physiological status; they were compact and large, had higher soil water and organic matter content compared with open areas and showed the strongest facilitation effect of the whole elevation gradient — that is, the highest increase in species richness and abundance of beneficiaries compared with open areas. Physiological data at low elevation indicated stressful abiotic conditions for A. tetraquetra, which formed loose and small cushions. These cushions showed less improved soil conditions and had reduced facilitative effects compared with those at high elevation. 5. Synthesis. Functional traits of the nurse species varied distinctively along the two opposing stress gradients, in parallel to the magnitude of differences in microenvironmental conditions between cushions and the surrounding open area, and also to the facilitation effect of cushions. Our data, therefore, provides a strong demonstration of the generally overlooked importance of a nurse plant's vigour and morphology for its facilitative effects.
Environment and host identity structure communities of green algal symbionts in lichens
An understanding of how biotic interactions shape species’ distributions is central to predicting host–symbiont responses under climate change. Switches to locally adapted algae have been proposed to be an adaptive strategy of lichen-forming fungi to cope with environmental change. However, it is unclear how lichen photobionts respond to environmental gradients, and whether they play a role in determining the fungal host’s upper and lower elevational limits. Deep-coverage Illumina DNA metabarcoding was used to track changes in the community composition of Trebouxia algae associated with two phylogenetically closely related, but ecologically divergent fungal hosts along a steep altitudinal gradient in the Mediterranean region. We detected the presence of multiple Trebouxia species in the majority of thalli. Both altitude and host genetic identity were strong predictors of photobiont community assembly in these two species. The predominantly clonally dispersing fungus showed stronger altitudinal structuring of photobiont communities than the sexually reproducing host. Elevation ranges of the host were not limited by the lack of compatible photobionts. Our study sheds light on the processes guiding the formation and distribution of specific fungal–algal combinations in the lichen symbiosis. The effect of environmental filtering acting on both symbiotic partners appears to shape the distribution of lichens.
Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity
The study of elevational diversity gradients dates back to the foundation of biogeography. Although elevational patterns of plant and animal diversity have been studied for centuries, such patterns have not been reported for microorganisms and remain poorly understood. Here, in an effort to assess the generality of elevational diversity patterns, we examined soil bacterial and plant diversity along an elevation gradient. To gain insight into the forces that structure these patterns, we adopted a multifaceted approach to incorporate information about the structure, diversity, and spatial turnover of montane communities in a phylogenetic context. We found that observed patterns of plant and bacterial diversity were fundamentally different. While bacterial taxon richness and phylogenetic diversity decreased monotonically from the lowest to highest elevations, plants followed a unimodal pattern, with a peak in richness and phylogenetic diversity at mid-elevations. At all elevations bacterial communities had a tendency to be phylogenetically clustered, containing closely related taxa. In contrast, plant communities did not exhibit a uniform phylogenetic structure across the gradient: they became more overdispersed with increasing elevation, containing distantly related taxa. Finally, a metric of phylogenetic beta-diversity showed that bacterial lineages were not randomly distributed, but rather exhibited significant spatial structure across the gradient, whereas plant lineages did not exhibit a significant phylogenetic signal. Quantifying the influence of sample scale in intertaxonomic comparisons remains a challenge. Nevertheless, our findings suggest that the forces structuring microorganism and macroorganism communities along elevational gradients differ.
Assessing native woody composition, structure, and carbon stocks along elevation-climate gradients in mature Pinus radiata plantations as a baseline for transitional forestry: a regional pilot study
Background: The ecological science associated with transitioning exotic forest to native dominance (hereafter transitional forestry, transition forests) is currently limited, yet this form of forest has expanded rapidly. In part, this is related to forest-based carbon credit schemes which have driven large-scale afforestation in exotic trees. In other circumstances (e.g., for soil conservation or values-based reasons such as biodiversity conservation), forest owners wish to transition their exotic forest to native forest without harvest. Knowledge is required to inform management of realistic expectations for regeneration and succession both spatially and temporally. Methods: Mature (>20-year-old) Pinus radiata plantations were surveyed along three elevation-climate gradients in the Waikato region of New Zealand to explore the composition and structure (including native carbon stocks) of plantation understories and whether these parameters vary spatially over several decades. Mammalian browsing was also recorded. Results: Native woody stem densities were variable. Factors indicated as driving variability were stand age, elevation, topographic shelter, soil hydrology, solar radiation, and air temperature. On average, understories comprised five native woody species in the seedling tier, a single native species in the sapling tier, and a single native species in the tree tier. The most common species were the sub-canopy tree species Melicytus ramiflorus, Geniostoma ligustrifolium, and Aristotelia serrata. Tall old-growth species, such as Beilschmiedia tawa, Podocarpus totara, Pectinopitys ferruginea, and Prumnopitys taxifolia, occurred in only particular circumstances and on average at densities too low to form a meaningful part of a future forest canopy. Average species richness was low, although some diversity hotspots occurred. Carbon stocks in native trees and tree ferns in the understories were on average 1.55±0.38 tCha–1. Heavy browsing by mammalian herbivores was recorded at 60% of plots. Conclusions: These data indicate typical understorey conditions in mature P. radiata plantations for this area of New Zealand in the absence of management to promote a native transition. These data also highlight the importance of browser control, enrichment planting of tall old-growth species, and canopy manipulations to accelerate regeneration and succession in non-harvest P. radiata plantations. The data suggest transitional forestry should only be attempted at scales that can be reasonably managed, and there is a need for caution against large-scale establishment of P. radiata for transitional forestry as at large scales, achieving adequate levels of management are uncertain.