Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
668
result(s) for
"embryophytes"
Sort by:
Evolutionary history of mycorrhizal symbioses and global host plant diversity
2018
The majority of vascular plants are mycorrhizal: 72% are arbuscular mycorrhizal (AM), 2.0% are ectomycorrhizal (EcM), 1.5% are ericoid mycorrhizal and 10% are orchid mycorrhizal. Just 8% are completely nonmycorrhizal (NM), whereas 7% have inconsistent NM–AM associations. Most NM and NM–AM plants are nutritional specialists (e.g. carnivores and parasites) or habitat specialists (e.g. hydrophytes and epiphytes). Mycorrhizal associations are consistent in most families, but there are exceptions with complex roots (e.g. both EcM and AM). We recognize three waves of mycorrhizal evolution, starting with AM in early land plants, continuing in the Cretaceous with multiple new NM or EcM linages, ericoid and orchid mycorrhizas. The third wave, which is recent and ongoing, has resulted in root complexity linked to rapid plant diversification in biodiversity hotspots.
Journal Article
Nitric oxide production in plants: an update
by
Gross, Inonge
,
Astier, Jeremy
,
Durner, Jörg
in
animals
,
autotrophs
,
Chlamydomonas reinhardtii
2018
We review overall and recent knowledge about nitric oxide production in plants.
Abstract
Nitric oxide (NO) is a key signaling molecule in plant physiology. However, its production in photosynthetic organisms remains partially unresolved. The best characterized NO production route involves the reduction of nitrite to NO via different non-enzymatic or enzymatic mechanisms. Nitrate reductases (NRs), the mitochondrial electron transport chain, and the new complex between NR and NOFNiR (nitric oxide-forming nitrite reductase) described in Chlamydomonas reinhardtii are the main enzymatic systems that perform this reductive NO production in plants. Apart from this reductive route, several reports acknowledge the possible existence of an oxidative NO production in an arginine-dependent pathway, similar to the nitric oxide synthase (NOS) activity present in animals. However, no NOS homologs have been found in the genome of embryophytes and, despite an increasing amount of evidence attesting to the existence of NOS-like activity in plants, the involved proteins remain to be identified. Here we review NO production in plants with emphasis on the presentation and discussion of recent data obtained in this field.
Journal Article
Auxin Response Factors: output control in auxin biology
2018
Auxin triggers gene expression changes through a family of ARF transcription factors. This review summarizes recent progress in understanding the mechanisms and diversity of ARF action.
Abstract
The phytohormone auxin is involved in almost all developmental processes in land plants. Most, if not all, of these processes are mediated by changes in gene expression. Auxin acts on gene expression through a short nuclear pathway that converges upon the activation of a family of DNA-binding transcription factors. These AUXIN RESPONSE FACTORS (ARFs) are thus the effector of auxin response and translate the chemical signal into the regulation of a defined set of genes. Given the limited number of dedicated components in auxin signaling, distinct properties among the ARF family probably contribute to the establishment of multiple unique auxin responses in plant development. In the two decades following the identification of the first ARF in Arabidopsis, much has been learnt about how these transcription factors act, and how they generate unique auxin responses. Progress in genetics, biochemistry, genomics, and structural biology has helped to develop mechanistic models for ARF action. However, despite intensive efforts, many central questions are yet to be addressed. In this review, we highlight what has been learnt about ARF transcription factors, and identify outstanding questions and challenges for the near future.
Journal Article
Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks
by
Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)
,
Courty, Pierre-Emmanuel
,
Recorbet, Ghislaine
in
Agriculture
,
arbuscular mycorrhizal symbiosis
,
Arbuscular mycorrhizas
2019
Arbuscular mycorrhizal symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most of land plants. The exchange of nutrients between host plants and arbuscular mycorrhizal fungi is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during arbuscular mycorrhizal symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed by arbuscular mycorrhizal fungi, which inter-connect plants from similar and/or different species. Then the best way to integrate this knowledge and the ensuing potential benefits of arbuscular mycorrhiza in a sustainable agriculture is discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Journal Article
Establishing a time‐scale for plant evolution
by
Clarke, John T.
,
Donoghue, Philip C. J.
,
Warnock, Rachel C. M.
in
Angiosperm
,
Angiospermae
,
Angiosperms
2011
• Plants have utterly transformed the planet, but testing hypotheses of causality requires a reliable time‐scale for plant evolution. While clock methods have been extensively developed, less attention has been paid to the correct interpretation and appropriate implementation of fossil data. • We constructed 17 calibrations, consisting of minimum constraints and soft maximum constraints, for divergences between model representatives of the major land plant lineages. Using a data set of seven plastid genes, we performed a cross‐validation analysis to determine the consistency of the calibrations. Six molecular clock analyses were then conducted, one with the original calibrations, and others exploring the impact on divergence estimates of changing maxima at basal nodes, and prior probability densities within calibrations. • Cross‐validation highlighted Tracheophyta and Euphyllophyta calibrations as inconsistent, either because their soft maxima were overly conservative or because of undetected rate variation. Molecular clock analyses yielded estimates ranging from 568–815 million yr before present (Ma) for crown embryophytes and from 175–240 Ma for crown angiosperms. • We reject both a post‐Jurassic origin of angiosperms and a post‐Cambrian origin of land plants. Our analyses also suggest that the establishment of the major embryophyte lineages occurred at a much slower tempo than suggested in most previous studies. These conclusions are entirely compatible with current palaeobotanical data, although not necessarily with their interpretation by palaeobotanists.
Journal Article
The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics
by
Martin, Francis M
,
ANR-11-LABX-0002,ARBRE,Recherches Avancées sur l'Arbre et les Ecosytèmes Forestiers
,
The Natural History Museum [London] (NHM)
in
Adaptation
,
Biological evolution
,
Chronology
2018
The mycorrhizal symbiosis at the dawn and rise of the land flora 1014 III. From early land plants to early trees: the origin of roots and true mycorrhizas 1016 IV. The diversification of the AM symbiosis 1019 V. The ECM symbiosis 1021 VI. The recently evolved ericoid and orchid mycorrhizas 1023 VII. Limits of paleontological vs genetic approaches and perspectives 1023 Acknowledgements 1025 References 1025 SUMMARY: The ability of fungi to form mycorrhizas with plants is one of the most remarkable and enduring adaptations to life on land. The occurrence of mycorrhizas is now well established in c. 85% of extant plants, yet the geological record of these associations is sparse. Fossils preserved under exceptional conditions provide tantalizing glimpses into the evolutionary history of mycorrhizas, showing the extent of their occurrence and aspects of their evolution in extinct plants. The fossil record has important roles to play in establishing a chronology of when key fungal associations evolved and in understanding their importance in ecosystems through time. Together with calibrated phylogenetic trees, these approaches extend our understanding of when and how groups evolved in the context of major environmental change on a global scale. Phylogenomics furthers this understanding into the evolution of different types of mycorrhizal associations, and genomic studies of both plants and fungi are shedding light on how the complex set of symbiotic traits evolved. Here we present a review of the main phases of the evolution of mycorrhizal interactions from palaeontological, phylogenetic and genomic perspectives, with the aim of highlighting the potential of fossil material and a geological perspective in a cross-disciplinary approach.
Journal Article
Structure, variation, and assembly of the root-associated microbiomes of rice
by
Santos-Medellín, Christian
,
Eisen, Jonathan A.
,
Podishetty, Natraj Kumar
in
Archaea
,
Bacteria - growth & development
,
Biological Sciences
2015
Plants depend upon beneficial interactions between roots and microbes for nutrient availability, growth promotion, and disease suppression. High-throughput sequencing approaches have provided recent insights into root microbiomes, but our current understanding is still limited relative to animal microbiomes. Here we present a detailed characterization of the root-associated microbiomes of the crop plant rice by deep sequencing, using plants grown under controlled conditions as well as field cultivation at multiple sites. The spatial resolution of the study distinguished three root-associated compartments, the endosphere (root interior), rhizoplane (root surface), and rhizosphere (soil close to the root surface), each of which was found to harbor a distinct microbiome. Under controlled greenhouse conditions, microbiome composition varied with soil source and genotype. In field conditions, geographical location and cultivation practice, namely organic vs. conventional, were factors contributing to microbiome variation. Rice cultivation is a major source of global methane emissions, and methanogenic archaea could be detected in all spatial compartments of field-grown rice. The depth and scale of this study were used to build coabundance networks that revealed potential microbial consortia, some of which were involved in methane cycling. Dynamic changes observed during microbiome acquisition, as well as steady-state compositions of spatial compartments, support a multistep model for root microbiome assembly from soil wherein the rhizoplane plays a selective gating role. Similarities in the distribution of phyla in the root microbiomes of rice and other plants suggest that conclusions derived from this study might be generally applicable to land plants.
Journal Article
Mycorrhizal ecology and evolution: the past, the present, and the future
by
Sanders, Ian R
,
Martin, Francis M
,
ANR-11-LABX-0002,ARBRE,Recherches Avancées sur l'Arbre et les Ecosytèmes Forestiers
in
Adaptation
,
Annotations
,
arbuscular mycorrhizal fungi
2015
Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50000 fungal species that form mycorrhizal associations with c. 250000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.
Journal Article
Plant evolution
2018
Photosynthetic eukaryotes thrive anywhere there is sunlight and water. But while such organisms are exceptionally diverse in form and function, only one phototrophic lineage succeeded in rising above its substrate: the land plants (embryophytes). Molecular phylogenetic data show that land plants evolved from streptophyte algae most closely related to extant Zygnematophyceae, and one of the principal aims of plant evolutionary biology is to uncover the key features of such algae that enabled this important transition. At the present time, however, mosaic and reductive evolution blur our picture of the closest algal ancestors of plants. Here we discuss recent progress and problems in inferring the biology of the algal progenitor of the terrestrial photosynthetic macrobiome.
Journal Article
Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates
by
Mower, Jeffrey P
,
Fan, Weishu
,
Gupta, Sakshi
in
Base Sequence
,
Coniferophyta
,
Embryophyta - genetics
2016
Rates of nucleotide substitution were previously shown to be several times slower in the plastid inverted repeat (IR) compared with single‐copy (SC) regions, suggesting that the IR provides enhanced copy‐correction activity. To examine the generality of this synonymous rate dependence on the IR, we compared plastomes from 69 pairs of closely related species representing 52 families of angiosperms, gymnosperms, and ferns. We explored the breadth of IR boundary shifts in land plants and demonstrate that synonymous substitution rates are, on average, 3.7 times slower in IR genes than in SC genes. In addition, genes moved from the SC into the IR exhibit lower synonymous rates consistent with other IR genes, while genes moved from the IR into the SC exhibit higher rates consistent with other SC genes. Surprisingly, however, several plastid genes from Pelargonium, Plantago, and Silene have highly accelerated synonymous rates despite their IR localization. Together, these results provide strong evidence that the duplicative nature of the IR reduces the substitution rate within this region. The anomalously fast‐evolving genes in Pelargonium, Plantago, and Silene indicate localized hypermutation, potentially induced by a higher level of error‐prone double‐strand break repair in these regions, which generates substitutional rate variation.
Journal Article