Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
34
result(s) for
"enamel durability"
Sort by:
Porcelain Enamel Coatings for Building Façades
2023
Materials used for building façades should combine aesthetics with functionality and durability. Vitreous enamels are a class of inorganic coatings, with a glossy and brilliant aspect, as well as high chemical resistance and protective properties. This study aimed to investigate the potentiality of enamel coatings for use in the architectural field. Different accelerated tests were carried out on enamel steel panels to test their durability and resistance to natural aggressive conditions (corrosive atmosphere and basic pH conditions, UV radiation, and pollution) and to mechanical damages. Two colors were chosen, red and white, to determine the effect of the addition of diverse pigments. Paints were employed as reference coating protection systems, as they currently serve as the standard for building façade design. Compared to paints, the enamel panels presented better corrosion protection, with higher adhesion to the steel substrate and stable aesthetic properties during the conducted tests, both in terms of color and gloss. Nevertheless, the white coating exhibited superior color stability, likely attributable to the presence of Se- and Cd-based pigments in the red coating. These pigments are known to be more prone to degradation. Overall, this work showed that porcelain enamels display good functional and aesthetic qualities, which make them suitable for use in the cladding of buildings and as transport infrastructure elements.
Journal Article
Influence of reduced application time on bonding durability of universal adhesives to demineralized enamel
2021
Objectives
This study aimed to assess the effect of application time on the microshear bond strength (μSBS) of three universal adhesives in demineralized and sound enamel before and after aging.
Materials and methods
Bovine teeth (192) were prepared where buccal surfaces were ground and divided into two groups (sound enamel and demineralized enamel). The specimens in each group were divided into 12 subgroups by combining 3 adhesive agents (All-Bond Universal, Scotchbond Universal, and Tokuyama Universal Bond) × 4 adhesion strategy. Each adhesive was applied with either prolonged (PA) or reduced (RA) application time in etch-and-rinse or self-etch mode. Bonded composites were subjected to μSBS testing after 24-h or 2-year water storage. The results were evaluated using four-way ANOVA and Tukey’s post-hoc test (
α
= 0.05).
Results
The μSBS of adhesives to sound enamel in both etching modes was mostly similar to demineralized enamel, regardless of application time and aging time. At 24-h, all adhesives with PA in self-etch mode showed higher μSBS when compared with RA, except Tokuyama Universal Bond, but after 2-year aging, no significant difference was found in μSBS between RA and PA. The μSBS of adhesives with PA in etch-and-rinse mode depended on used adhesive and enamel condition compared to RA, regardless of μSBS testing time.
Conclusions
PA of adhesives did not reveal a significant difference in μSBS to enamel, regardless of substrate type and etching mode.
Clinical relevance
After 2-year aging, the bond strength of universal adhesives presented no significant difference between PA and RA treatments.
Journal Article
Effect of Adhesive Application Method on the Enamel Bond Durability of a Two-Step Adhesive System Utilizing a Universal Adhesive-Derived Primer
by
Shibasaki, Sho
,
Barkmeier, Wayne W.
,
Sai, Keiichi
in
Acids
,
adhesive layer thickness
,
Adhesives
2021
This study aimed to evaluate the effect of the adhesive application method on the durability of the enamel bond and the thickness of the adhesive layer. A new-generation two-step universal adhesive system, G2-Bond Universal, and two conventional two-step adhesive systems were utilized. The shear bond strength to bovine enamel was measured after thermal cycling in both etch-and-rinse and self-etch modes. Fifteen specimens were divided into three groups as follows: Group I, wherein a strong air stream was applied over the bonding agent for 5 s; Group II, wherein a gentle air stream was applied over the bonding agent for 5 s; and Group III, which was prepared as in Group II, followed by the application of a second layer of the bonding agent and a gentle air stream for 5 s. The durability of the enamel bond and thickness of the tested adhesives were influenced by the application method in both etching modes. The application method used in Group II appeared to be most suitable in terms of the bonding of the adhesives to the enamel. The new-generation two-step self-etch adhesive, comprising a universal adhesive-derived primer and a hydrophobic bonding agent, showed superior bond performance to the conventional two-step adhesive systems.
Journal Article
Porcelain Enamel Coatings
by
Russo, Francesca
,
Compagnoni, Attilio Monzio
,
Rossi, Stefano
in
13th century
,
18th century
,
corrosion protection
2021
Porcelain enamel is an inorganic-type coating, which is applied to metals or glass for both decorative and functional purposes. This coating is a silica-based solidified glass mass obtained by high-temperature firing (temperature can range between 450 and 1200 °C depending on the substrate). Porcelain enamel coatings differ from ceramic coatings mainly by their glass structure and dilatation coefficient, and from organic paints mainly by the inorganic nature of the matrix and the chemical bond that exists between the coating and the substrate.
Journal Article
Corrosion Behavior of Porcelain Enamels in Water Tank Storage
2025
Recent updates to European Union directives on drinking water have extended safety limits to hot water, increasing the need to assess materials commonly used in water storage systems, such as porcelain enamel. This study investigates the interaction between enameled surfaces and aqueous environments, focusing on element release and microstructural alterations. The mass loss and chemical stability of the enamel were evaluated through a combination of surface characterization and Inductively Coupled Plasma (ICP) analysis. Time-resolved quantification of selected elements confirmed that all concentrations remained within EU regulatory thresholds. Additionally, the enamel was subjected to acidic and alkaline environments to explore the influence of pH on degradation mechanisms. Scanning electron microscopy (SEM) revealed that while the enamel undergoes surface-level modifications, the bulk structure remains intact. Notably, alkaline exposure had the strongest impact, dissolving needle-like calcium-rich structures and altering the surface more significantly than water or acid alone. These structures appear to facilitate localized corrosion once degraded. The correlation between surface morphology and elemental release dynamics highlights the critical role of microstructural features in determining long-term chemical resistance. Overall, the results underscore the importance of optimizing both the composition and structure of enamel coatings for applications involving prolonged contact with potable water.
Journal Article
Bond durability of universal adhesive to bovine enamel using self-etch mode
2018
ObjectivesThe purpose of this study was to examine the enamel bond durability of universal adhesives in the self-etch mode under 2-year water storage and thermal cycling conditions.Materials and methodsThree commercially available universal adhesives and a gold standard two-step self-etch adhesive were used. Ten specimens of bovine enamel were prepared per test group, and shear bond strength (SBS) was measured to determine the bonding durability after thermal cycling (TC) or long-term water storage (WS). The bonded specimens were divided into three groups: (1) specimens subjected to TC, where the bonded specimens were stored in 37 °C distilled water for 24 h before being subjected to 3000, 10,000, 20,000 or 30,000 TC; (2) specimens stored in 37 °C distilled water for 3 months, 6 months, 1 year or 2 year; and (3) specimens stored in 37 °C distilled water for 24 h, serving as a baseline.ResultsThe two-step self-etch adhesive showed significantly higher SBS than the universal adhesives tested, regardless of the type of degradation method. All universal adhesives showed no significant enamel SBS reductions in TC and WS, when compared to baseline and the other degradation conditions.ConclusionsCompared to the bond strengths obtained with the two-step self-etch adhesive, significantly lower bond strengths were obtained with universal adhesives. However, the enamel bond durability of universal adhesives was relatively stable under both degradation conditions tested.Clinical relevanceThe present data indicate that the enamel bond durability of universal adhesives in the self-etch mode might be sufficient for clinical use.
Journal Article
Nanomechanical interlocking mechanism of 10-MDP nanolayering
2025
The functional monomer 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) and its calcium salt (Ca-MDP), formed via interfacial nanolayering, are critical for achieving long-term dental bonding durability. Despite extensive clinical use, the crystallinity, three-dimensional (3D) organization, and hierarchical ultrastructure of Ca-MDP remain inadequately characterized at the nanometric scale. This study aims to investigate the crystallinity, structural nature of Ca-MDP salt and their potential role in the durability of 10-MDP-based adhesives. Three characteristic diffraction maxima corresponding to Ca-MDP nanolayers were initially detected using powder X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). However, further high-resolution analysis via advanced STEM techniques—including High-Angle Annular Dark Field (HAADF), rotationally invariant Center of Mass (riCOM), and integrated Differential Phase Contrast (iDPC)—revealed that the Ca-MDP salt does not exhibit atomic crystallinity but rather forms a layer-ordered amorphous architecture. The Ca²⁺-rich nanolayers demonstrated variable interspacing and lacked definitive lattice fringes typically associated with crystalline phases. Electron tomography further confirmed a nonuniform, anisotropic self-assembly across X, Y, and Z axes, resulting in 3D directional spreading and spatially distinct nanolayered domains. These findings support a novel nanomechanical interlocking hypothesis: during clinical bonding procedures, adhesive resin components are physically entrapped within the Ca-MDP inter-nanolayers—contributing to enhanced durability. This study proposes a new 3D structural model of Ca-MDP self-assembly, offering deeper mechanistic insights into the long-term performance of 10-MDP-containing adhesives.
Journal Article
A Pilot Study for “In Vitro” Testing the Surface Conditioning Effects on CAD/CAM Hybrid Nanoceramic Adhesion
2026
Background/Objectives: The clinical application of CAD/CAM restorative materials continues to evolve due to increasing demand for aesthetic, durable, and minimally invasive indirect restorations. Hybrid nanoceramics, such as Grandio disc (VOCO GmbH, Cuxhaven, Germany), are increasingly used in indirect restorative dentistry due to their favourable combination of mechanical strength, polishability, wear resistance, and bonding potential. One challenge associated with adhesive protocols for CAD/CAM materials lies in achieving durable bonds with resin cements. Extensive post-polymerization during fabrication reduces the number of unreacted monomers available for chemical interaction, thereby limiting the effectiveness of traditional adhesive strategies and necessitating specific surface conditioning approaches. This study aimed to evaluate, in a preliminary, non-inferential manner, the influence of several combined conditioning protocols on surface micromorphology, elemental composition, and descriptive SBS trends of a CAD/CAM hybrid nanoceramic. This work was designed as a preliminary pilot feasibility study. Due to the limited number of specimens (two discs per protocol, each providing two independent enamel bonding measurements), all bond strength outcomes were interpreted descriptively, without inferential statistical testing. This in vitro study investigated the effects of various surface conditioning protocols on the adhesive performance of CAD/CAM hybrid nanoceramics (Grandio disc, VOCO GmbH, Cuxhaven, Germany) to dental enamel. Hydrofluoric acid (HF) etching was performed to improve adhesion to indirect resin-based materials using two commercially available gels: 9.5% Porcelain Etchant (Bisco, Inc., Schaumburg, IL, USA) and 4.5% IPS Ceramic Etching Gel (Ivoclar Vivadent, Schaan, Liechtenstein), in combination with airborne-particle abrasion (APA), silanization, and universal adhesive application. HF may selectively dissolve the inorganic phase, while APA increases surface texture and micromechanical retention. However, existing literature reports inconsistent results regarding the optimal conditioning method for hybrid composites and nanoceramics, and the relationship between micromorphology, elemental surface changes, and adhesion remains insufficiently clarified. Methods: A total of ten composite specimens were subjected to five conditioning protocols combining airborne-particle abrasion with varying hydrofluoric acid (HF) concentrations and etching times. Bonding was performed using a dual-cure resin cement (BiFix QM) and evaluated by shear bond strength (SBS) testing. Surface morphology was examined through environmental scanning electron microscopy (ESEM), and elemental composition was analyzed via energy-dispersive X-ray spectroscopy (EDS). Results: indicated that dual treatment with HF and sandblasting showed descriptively higher SBS, with values ranging from 5.01 to 6.14 MPa, compared to 1.85 MPa in the sandblasting-only group. ESEM revealed that higher HF concentrations (10%) created more porous and irregular surfaces, while EDS indicated an increased fluorine presence trend and silicon reduction, indicating deeper chemical activation. However, extending HF exposure beyond 20 s did not further improve bonding, suggesting the importance of protocol optimization. Conclusions: The preliminary observations suggest a synergistic effect of mechanical and chemical conditioning on hybrid ceramic adhesion, but values should be interpreted qualitatively due to the pilot nature of the study. Manufacturer-recommended air abrasion alone may provide limited adhesion under high-stress conditions, although this requires confirmation in studies with larger sample sizes and ageing simulations. Future studies should address long-term durability and extend the comparison to other hybrid CAD/CAM materials and to other etching protocols.
Journal Article
Strategies of Bioceramics, Bioactive Glasses in Endodontics: Future Perspectives of Restorative Dentistry
2022
Prevalently, there is a primary strategy to cure caries using restorative materials notably bioceramics. Existing synthetic materials stimulate natural tooth structure with acceptable interfacial bonding and esthetic and biomechanical qualities with better durability. Several bioceramics have been introduced and investigated for their potentialities as restorative materials. Biomineralization of tooth initiates repair and regeneration of natural dental tissue and reinstating the integrity of periodontium. In the evolution of bioceramics in the aspects of different essential composition for dental application, recent technology and modern strategies revolutionize the restorative dentistry. Bioglass is one among the important bioceramics as a restorative material, and by regulating the properties of the material, it is possible to construct improved formulation towards restoration. This article reviews the current revolution of endodontics, existing restorative materials, and technologies to be achieve for engineering materials with the better design.
Journal Article
Micro-Tensile Bond Strength of a Mesoporous Bioactive Glass-Containing Universal Adhesive: An In Vitro Study on the Effects of Artificial Aging
2025
Background: We evaluated the immediate and artificially aged micro-tensile bond strengths (μTBS) of Hi-Bond Universal, a universal adhesive containing mesoporous bioactive glass (MBG). Methods: Human dentin specimens were bonded using the following four application modes: Hi-Bond Universal in etch-and-rinse mode, Hi-Bond Universal in self-etch mode, Single Bond 2 in etch-and-rinse mode, and G-ænial Bond in self-etch mode. Specimens were tested either immediately or after artificial aging (thermocycling or water storage). μTBS values were analyzed statistically, and the resin–dentin interfaces were examined using FE-SEM (Field-emission scanning electron microscopy). Results: Results showed that both aging and adhesive mode significantly affected the μTBS (p < 0.0001). Immediately after bonding, etch-and-rinse modes produced significantly higher μTBS than the self-etch modes (p < 0.0001). Artificial aging reduced bond strength by approximately 30–50%; however, the μTBS of Hi-Bond Universal decreased less than that of Single Bond 2 after water storage. FE-SEM analysis also revealed detachment of the hybrid layer in most adhesives following aging; however, Hi-Bond Universal in the etch-and-rinse mode maintained a relatively intact adhesive layer after water storage. Conclusion: Etch-and-rinse application of MBG-containing adhesive may enhance the long-term durability of adhesive restorations.
Journal Article