Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"endometrial cancer machine learning MRI"
Sort by:
The Applicability of Artificial Intelligence in Predicting the Depth of Myometrial Invasion on MRI Studies—A Systematic Review
by
Nistor, Ionut
,
Stefan, Anca-Elena
,
Petrila, Octavia
in
Accuracy
,
Artificial intelligence
,
Cancer
2023
(1) Objective: Artificial intelligence (AI) has become an important tool in medicine in diagnosis, prognosis, and treatment evaluation, and its role will increase over time, along with the improvement and validation of AI models. We evaluated the applicability of AI in predicting the depth of myometrial invasion in MRI studies in women with endometrial cancer. (2) Methods: A systematic search was conducted in PubMed, SCOPUS, Embase, and clinicaltrials.gov databases for research papers from inception to May 2023. As keywords, we used: “endometrial cancer artificial intelligence”, “endometrial cancer AI”, “endometrial cancer MRI artificial intelligence”, “endometrial cancer machine learning”, and “endometrial cancer machine learning MRI”. We excluded studies that did not evaluate myometrial invasion. (3) Results: Of 1651 screened records, eight were eligible. The size of the dataset was between 50 and 530 participants among the studies. We evaluated the models by accuracy scores, area under the curve, and sensitivity/specificity. A quantitative analysis was not appropriate for this study due to the high heterogeneity among studies. (4) Conclusions: High accuracy, sensitivity, and specificity rates were obtained among studies using different AI systems. Overall, the existing studies suggest that they have the potential to improve the accuracy and efficiency of the myometrial invasion evaluation of MRI images in endometrial cancer patients.
Journal Article
Multimodal MRI Image Fusion for Early Automatic Staging of Endometrial Cancer
2025
This magnetic resonance imaging multimodal fusion study aims to automate the staging of endometrial cancer using deep learning and to compare the diagnostic performance of deep learning with that of radiologists in the staging of endometrial cancer. This study retrospectively investigated 122 patients with pathologically confirmed early EC from January 1, 2025 to December 31, 2021. Of these patients, 68 were in the International Federation of Gynecology and Obstetrics (FIGO) stage IA, and 54 were in FIGO stage IB. Based on the Swin transformer model and its proprietary SW-MSA (shift window multiple self-coherence) module, magnetic resonance imaging (MRI) images in each of the three planes (sagittal, coronal, and transverse) are cropped, enhanced, and classified, and fusion experiments in the three planes are performed simultaneously. Selecting one plane for the experiment, the accuracy of IA and IB classification was 0.988 in the sagittal, 0.96 in the coronal, and 0.94 in the transverse position, and classification accuracy after the fusion of three planes reached 1. Finally, the automatic classification method based on the Swin transformer has an accuracy of 1, a recall of 1, and a specificity of 1 for early EC classification. In this study, the multimodal fusion approach accurately classified early EC. It was comparable to what a radiologist would perform and simpler and more precise than previous methods that required segmenting followed by staging.
Journal Article
Prediction of Deep Myometrial Infiltration, Clinical Risk Category, Histological Type, and Lymphovascular Space Invasion in Women with Endometrial Cancer Based on Clinical and T2-Weighted MRI Radiomic Features
by
Park, Won-Ho Edward
,
Aboagye, Eric O.
,
Ellis, Laura Burney
in
Cancer
,
Care and treatment
,
Classification
2023
Purpose: To predict deep myometrial infiltration (DMI), clinical risk category, histological type, and lymphovascular space invasion (LVSI) in women with endometrial cancer using machine learning classification methods based on clinical and image signatures from T2-weighted MR images. Methods: A training dataset containing 413 patients and an independent testing dataset consisting of 82 cases were employed in this retrospective study. Manual segmentation of the whole tumor volume on sagittal T2-weighted MRI was performed. Clinical and radiomic features were extracted to predict: (i) DMI of endometrial cancer patients, (ii) endometrial cancer clinical high-risk level, (iii) histological subtype of tumor, and (iv) presence of LVSI. A classification model with different automatically selected hyperparameter values was created. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve, F1 score, average recall, and average precision were calculated to evaluate different models. Results: Based on the independent external testing dataset, the AUCs for DMI, high-risk endometrial cancer, endometrial histological type, and LVSI classification were 0.79, 0.82, 0.91, and 0.85, respectively. The corresponding 95% confidence intervals (CI) of the AUCs were [0.69, 0.89], [0.75, 0.91], [0.83, 0.97], and [0.77, 0.93], respectively. Conclusion: It is possible to classify endometrial cancer DMI, risk, histology type, and LVSI using different machine learning methods.
Journal Article
Radiomics in Gynaecological Imaging: A State-of-the-Art Review
by
Vernuccio, Federica
,
Maino, Cesare
,
Cannella, Roberto
in
Algorithms
,
Care and treatment
,
cervical cancer
2023
Radiomics is an emerging field of research based on extracting mathematical descriptive features from medical images with the aim of improving diagnostic performance and providing increasing support to clinical decisions. In recent years, a number of studies have been published regarding different possible applications of radiomics in gynaecological imaging. Many fields have been explored, such as tumour diagnosis and staging, differentiation of histological subtypes, assessment of distant metastases, prediction of response to therapy, recurrence, and patients’ outcome. However, several studies are not robust, do not include validation cohorts, or lack reproducibility. On these bases, the purpose of this narrative review is to provide an overview of the most relevant studies in the literature on radiomics in gynaecological imaging. We focused on gynaecological malignancies, particularly endometrial, cervical, mesenchymal, and ovarian malignant pathologies.
Journal Article