Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
359,319
result(s) for
"energy system"
Sort by:
Energy management and operational control methods for grid battery energy storage systems
2021
Energy storage is one of the key means for improving the flexibility, economy and security of power system. It is also important in promoting new energy consumption and the energy Internet. Therefore, energy storage is expected to support distributed power and the micro-grid, promote open sharing and flexible trading of energy production and consumption, and realize multi-functional coordination. In recent years, with the rapid development of the battery energy storage industry, its technology has shown the characteristics and trends for large-scale integration and distributed applications with multi-objective collaboration. As a grid-level application, energy management systems (EMS) of a battery energy storage system (BESS) were deployed in real time at utility control centers as an important component of power grid management. Based on the analysis of the development status of a BESS, this paper introduced application scenarios, such as reduction of power output fluctuations, agreement to the output plan at the renewable energy generation side, power grid frequency adjustment, power flow optimization at the power transmission side, and a distributed and mobile energy storage system at the power distribution side. The studies and application status of a BESS in recent years were reviewed. The energy management, operation control methods, and application scenes of large-scale BESSs were also examined in the study.
Journal Article
A critical review of the integration of renewable energy sources with various technologies
by
Erdiwansyah
,
Husin, H.
,
Muhibbuddin
in
Alternative energy sources
,
Clean technology
,
Decarbonization
2021
Wind power, solar power and water power are technologies that can be used as the main sources of renewable energy so that the target of decarbonisation in the energy sector can be achieved. However, when compared with conventional power plants, they have a significant difference. The share of renewable energy has made a difference and posed various challenges, especially in the power generation system. The reliability of the power system can achieve the decarbonization target but this objective often collides with several challenges and failures, such that they make achievement of the target very vulnerable, Even so, the challenges and technological solutions are still very rarely discussed in the literature. This study carried out specific investigations on various technological solutions and challenges, especially in the power system domain. The results of the review of the solution matrix and the interrelated technological challenges are the most important parts to be developed in the future. Developing a matrix with various renewable technology solutions can help solve RE challenges. The potential of the developed technological solutions is expected to be able to help and prioritize them especially cost-effective energy. In addition, technology solutions that are identified in groups can help reduce certain challenges. The categories developed in this study are used to assist in determining the specific needs and increasing transparency of the renewable energy integration process in the future.
Journal Article
A Review on Optimal Energy Management in Commercial Buildings
by
Hanafi, Ainain. N.
,
Sulaima, Mohamad. F.
,
Hossain, Jahangir
in
Air conditioning
,
Alternative energy sources
,
Analysis
2023
The rising cost and demand for energy have prompted the need to devise innovative methods for energy monitoring, control, and conservation. In addition, statistics show that 20% of energy losses are due to the mismanagement of energy. Therefore, the utilization of energy management can make a substantial contribution to reducing the unnecessary usage of energy consumption. In line with that, the intelligent control and optimization of energy management systems integrated with renewable energy resources and energy storage systems are required to increase building energy efficiency while considering the reduction in the cost of energy bills, dependability of the grid, and mitigating carbon emissions. Even though a variety of optimization and control tactics are being utilized to reduce energy consumption in buildings nowadays, several issues remain unsolved. Therefore, this paper presents a critical review of energy management in commercial buildings and a comparative discussion to improve building energy efficiency using both active and passive solutions, which could lead to net-zero energy buildings. This work also explores different optimum energy management controller objectives and constraints concerning user comfort, energy policy, data privacy, and security. In addition, the review depicts prospective future trends and issues for developing an effective building energy management system, which may play an unavoidable part in fulfilling the United Nations Sustainable Development Goals.
Journal Article
Modelling and Simulation/Optimization of Austria’s National Multi-Energy System with a High Degree of Spatial and Temporal Resolution
by
Schlömicher, Theresa
,
Fritz, Florian
,
Steinegger, Josef
in
100% renewable energy sources (RESs)
,
Alternative energy sources
,
Austria
2022
The European Union and the Austrian government have set ambitious plans to expand renewable energy sources and lower carbon dioxide emissions. However, the expansion of volatile renewable energy sources may affect today’s energy system. To investigate future challenges in Austria’s energy system, a suitable simulation methodology, temporal and spatially resolved generation and consumption data and energy grid depiction, is necessary. In this paper, we introduce a flexible multi-energy simulation framework with optimization capabilities that can be applied to a broad range of use cases. Furthermore, it is shown how a spatially and temporally resolved multi-energy system model can be set up on a national scale. To consider actual infrastructure properties, a detailed energy grid depiction is considered. Three scenarios assess the potential future energy system of Austria, focusing on the power grid, based on the government’s renewable energy sources expansion targets in the year 2030. Results show that the overwhelming majority of line overloads accrue in Austria’s power distribution grid. Furthermore, the mode of operation of flexible consumer and generation also affects the number of line overloads as well.
Journal Article
Grid converters for photovoltaic and wind power systems
by
Teodorescu, Remus
,
Liserre, Marco
,
Rodriguez, Pedro
in
Electric current converters
,
Equipment and supplies
,
Photovoltaic power systems
2011,2010
Advancements in grid converter technology have been pivotal in the successful integration of renewable energy. The high penetration of renewable energy systems is calling for new more stringent grid requirements. As a consequence, the grid converters should be able to exhibit advanced functions like: dynamic control of active and reactive current injection during faults, and grid services support. <p>This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition to power electronics, coverage focuses on the specific applications in photovoltaic and wind power systems where grid condition is an essential factor.</p> <p>With a review of the most recent grid requirements for photovoltaic and wind power systems, the relevant issues are discussed:</p> <ul> <li> <div>Modern grid inverter topologies for photovoltaic and wind turbines</div> </li> <li> <div>Islanding detection methods for photovoltaic systems</div> </li> <li> <div>Synchronization techniques based on second order generalized integrators (SOGI)</div> </li> <li> <div>Advanced synchronization techniques with robust operation under grid unbalance condition</div> </li> <li> <div>Resonant controller techniques for current control and harmonic compensation</div> </li> <li> <div>Grid filter design and active damping techniques</div> </li> <li> <div>Power control under grid fault conditions, considering both positive and negative sequences</div> </li> </ul> <p>Throughout, the authors include practical examples, exercises, and simulation models and an accompanying website sets out further modeling techniques using MATLAB® and Simulink environments and physical security information management (PSIM) software.</p> <p><i>Grid Converters for Photovoltaic and Wind Power Systems</i> is intended as a course book for graduate students with a background in electrical engineering and for professionals in the evolving renewable energy industry. For professors interested in adopting the course, a set of slides is available for download from the website.</p> <p><b>Companion Website</b></p> <p><a href=\"http://www.wiley.com/go/grid_converters\">www.wiley.com/go/grid_converters</a></p>