Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
93,259 result(s) for "evolutionary ecology"
Sort by:
Language Structure Is Partly Determined by Social Structure
Languages differ greatly both in their syntactic and morphological systems and in the social environments in which they exist. We challenge the view that language grammars are unrelated to social environments in which they are learned and used. We conducted a statistical analysis of >2,000 languages using a combination of demographic sources and the World Atlas of Language Structures--a database of structural language properties. We found strong relationships between linguistic factors related to morphological complexity, and demographic/socio-historical factors such as the number of language users, geographic spread, and degree of language contact. The analyses suggest that languages spoken by large groups have simpler inflectional morphology than languages spoken by smaller groups as measured on a variety of factors such as case systems and complexity of conjugations. Additionally, languages spoken by large groups are much more likely to use lexical strategies in place of inflectional morphology to encode evidentiality, negation, aspect, and possession. Our findings indicate that just as biological organisms are shaped by ecological niches, language structures appear to adapt to the environment (niche) in which they are being learned and used. As adults learn a language, features that are difficult for them to acquire, are less likely to be passed on to subsequent learners. Languages used for communication in large groups that include adult learners appear to have been subjected to such selection. Conversely, the morphological complexity common to languages used in small groups increases redundancy which may facilitate language learning by infants. We hypothesize that language structures are subjected to different evolutionary pressures in different social environments. Just as biological organisms are shaped by ecological niches, language structures appear to adapt to the environment (niche) in which they are being learned and used. The proposed Linguistic Niche Hypothesis has implications for answering the broad question of why languages differ in the way they do and makes empirical predictions regarding language acquisition capacities of children versus adults.
VertNet: A New Model for Biodiversity Data Sharing
  Collectively, nearly 4.5 million occurrence records from 867,000 distinct locations have been georeferenced following best practices [13] by leveraging geographic resources and expertise at each institution. Since 2003, at least 175 undergraduates and 282 higher level researchers from 161 institutions in 40 countries have been trained directly through project activities, including 14 international georeferencing workshops. Acknowledgments We'd like to thank National Biological Information Infrastructure for support of the VertNet project and the VertNet Steering Committee for leadership and guidance. Besides the authors listed in the authorship list, the Steering Committee includes Hank Bart, John Bates, Gladys Cotter, James Hanken, Craig Moritz, Nancy Simmons, and Linda Trueb.
Bridgehead effect in the worldwide invasion of the biocontrol Harlequin Ladybird
Recent studies of the routes of worldwide introductions of alien organisms suggest that many widespread invasions could have stemmed not from the native range, but from a particularly successful invasive population, which serves as the source of colonists for remote new territories. We call here this phenomenon the invasive bridgehead effect. Evaluating the likelihood of such a scenario is heuristically challenging. We solved this problem by using approximate Bayesian computation methods to quantitatively compare complex invasion scenarios based on the analysis of population genetics (microsatellite variation) and historical (first observation dates) data. We applied this approach to the Harlequin ladybird Harmonia axyridis (HA), a coccinellid native to Asia that was repeatedly introduced as a biocontrol agent without becoming established for decades. We show that the recent burst of worldwide invasions of HA followed a bridgehead scenario, in which an invasive population in eastern North America acted as the source of the colonists that invaded the European, South American and African continents, with some admixture with a biocontrol strain in Europe. This demonstration of a mechanism of invasion via a bridgehead has important implications both for invasion theory (i. e., a single evolutionary shift in the bridgehead population versus multiple changes in case of introduced populations becoming invasive independently) and for ongoing efforts to manage invasions by alien organisms (i. e., heightened vigilance against invasive bridgeheads)
Inferring the Dynamics of Diversification: A Coalescent Approach
Recent analyses of the fossil record and molecular phylogenies suggest that there are fundamental limits to biodiversity, possibly arising from constraints in the availability of space, resources, or ecological niches. Under this hypothesis, speciation rates decay over time and biodiversity eventually saturates, with new species emerging only when others are driven to extinction. This view of macro-evolution contradicts an alternative hypothesis that biodiversity is unbounded, with species ever accumulating as they find new niches to occupy. These contrasting theories of biodiversity dynamics yield fundamentally different explanations for the disparity in species richness across taxa and regions. Here, we test whether speciation rates have decayed or remained constant over time, and whether biodiversity is saturated or still expanding. We first derive a general likelihood expression for internode distances in a phylogeny, based on the well-known coalescent process from population genetics. This expression accounts for either time-constant or time-variable rates, time-constant or time-variable diversity, and completely or incompletely sampled phylogenies. We then compare the performance of different diversification scenarios in explaining a set of 289 phylogenies representing amphibians, arthropods, birds, mammals, mollusks, and flowering plants. Our results indicate that speciation rates typically decay over time, but that diversity is still expanding at present. The evidence for expanding-diversity models suggests that an upper limit to biodiversity has not yet been reached, or that no such limit exists.
Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity
Background: Two decades of research showing that increasing plant diversity results in greater community productivity has been predicated on greater functional diversity allowing access to more of the total available resources. Thus, understanding phenotypic attributes that allow species to partition resources is fundamentally important to explaining diversity-productivity relationships. Methodology/Principal Findings: Here we use data from a long-term experiment (Cedar Creek, MN) and compare the extent to which productivity is explained by seven types of community metrics of functional variation: 1) species richness, 2) variation in 10 individual traits, 3) functional group richness, 4) a distance-based measure of functional diversity, 5) a hierarchical multivariate clustering method, 6) a nonmetric multidimensional scaling approach, and 7) a phylogenetic diversity measure, summing phylogenetic branch lengths connecting community members together and may be a surrogate for ecological differences. Although most of these diversity measures provided significant explanations of variation in productivity, the presence of a nitrogen fixer and phylogenetic diversity were the two best explanatory variables. Further, a statistical model that included the presence of a nitrogen fixer, seed weight and phylogenetic diversity was a better explanation of community productivity than other models. Conclusions: Evolutionary relationships among species appear to explain patterns of grassland productivity. Further, these results reveal that functional differences among species involve a complex suite of traits and that perhaps phylogenetic relationships provide a better measure of the diversity among species that contributes to productivity than individual or small groups of traits.
Use of ITS2 Region as the Universal DNA Barcode for Plants and Animals
The internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA is regarded as one of the candidate DNA barcodes because it possesses a number of valuable characteristics, such as the availability of conserved regions for designing universal primers, the ease of its amplification, and sufficient variability to distinguish even closely related species. However, a general analysis of its ability to discriminate species in a comprehensive sample set is lacking. In the current study, 50,790 plant and 12,221 animal ITS2 sequences downloaded from GenBank were evaluated according to sequence length, GC content, intra- and inter-specific divergence, and efficiency of identification. The results show that the inter-specific divergence of congeneric species in plants and animals was greater than its corresponding intra-specific variations. The success rates for using the ITS2 region to identify dicotyledons, monocotyledons, gymnosperms, ferns, mosses, and animals were 76.1%, 74.2%, 67.1%, 88.1%, 77.4%, and 91.7% at the species level, respectively. The ITS2 region unveiled a different ability to identify closely related species within different families and genera. The secondary structure of the ITS2 region could provide useful information for species identification and could be considered as a molecular morphological characteristic. As one of the most popular phylogenetic markers for eukaryota, we propose that the ITS2 locus should be used as a universal DNA barcode for identifying plant species and as a complementary locus for CO1 to identify animal species. We have also developed a web application to facilitate ITS2-based cross-kingdom species identification (http://its2-plantidit.dnsalias.org).
The Role of DNA Barcodes in Understanding and Conservation of Mammal Diversity in Southeast Asia
Southeast Asia is recognized as a region of very high biodiversity, much of which is currently at risk due to habitat loss and other threats. However, many aspects of this diversity, even for relatively well-known groups such as mammals, are poorly known, limiting ability to develop conservation plans. This study examines the value of DNA barcodes, sequences of the mitochondrial COI gene, to enhance understanding of mammalian diversity in the region and hence to aid conservation planning. DNA barcodes were obtained from nearly 1900 specimens representing 165 recognized species of bats. All morphologically or acoustically distinct species, based on classical taxonomy, could be discriminated with DNA barcodes except four closely allied species pairs. Many currently recognized species contained multiple barcode lineages, often with deep divergence suggesting unrecognized species. In addition, most widespread species showed substantial genetic differentiation across their distributions. Our results suggest that mammal species richness within the region may be underestimated by at least 50%, and there are higher levels of endemism and greater intra-specific population structure than previously recognized. DNA barcodes can aid conservation and research by assisting field workers in identifying species, by helping taxonomists determine species groups needing more detailed analysis, and by facilitating the recognition of the appropriate units and scales for conservation planning.
The Scale of Population Structure in Arabidopsis thaliana
The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of populations. By contrast, in North America, where it exists as an exotic species, A. thaliana exhibits little or no population structure at a continental scale but local isolation by distance that extends hundreds of km. This suggests a pattern for the development of isolation by distance that can establish itself shortly after an organism fills a new habitat range. It also raises questions about the general applicability of many standard population genetics models. Any model based on discrete clusters of interchangeable individuals will be an uneasy fit to organisms like A. thaliana which exhibit continuous isolation by distance on many scales.
Barcoding Nemo: DNA-Based Identifications for the Ornamental Fish Trade
Background: Trade in ornamental fishes represents, by far, the largest route for the importation of exotic vertebrates. There is growing pressure to regulate this trade with the goal of ensuring that species are sustainably harvested and that their point of origin is accurately reported. One important element of such regulation involves easy access to specimen identifications, a task that is currently difficult for all but specialists because of the large number of species involved. The present study represents an important first step in making identifications more accessible by assembling a DNA barcode reference sequence library for nearly half of the ornamental fish species imported into North America. Methodology/Principal Findings: Analysis of the cytochrome c oxidase subunit I (COI) gene from 391 species from 8 coral reef locations revealed that 98% of these species exhibit distinct barcode clusters, allowing their unambiguous identification. Most species showed little intra-specific variation (adjusted mean = 0.21%), but nine species included two or three lineages showing much more divergence (2.19–6.52%) and likely represent overlooked species complexes. By contrast, three genera contained a species pair or triad that lacked barcode divergence, cases that may reflect hybridization, young taxa or taxonomic over-splitting. Conclusions/Significance: Although incomplete, this barcode library already provides a new species identification tool for the ornamental fish industry, opening a realm of applications linked to collection practices, regulatory control and conservation.
Linkage and Association Mapping of Arabidopsis thaliana Flowering Time in Nature
Flowering time is a key life-history trait in the plant life cycle. Most studies to unravel the genetics of flowering time in Arabidopsis thaliana have been performed under greenhouse conditions. Here, we describe a study about the genetics of flowering time that differs from previous studies in two important ways: first, we measure flowering time in a more complex and ecologically realistic environment; and, second, we combine the advantages of genome-wide association (GWA) and traditional linkage (QTL) mapping. Our experiments involved phenotyping nearly 20,000 plants over 2 winters under field conditions, including 184 worldwide natural accessions genotyped for 216,509 SNPs and 4,366 RILs derived from 13 independent crosses chosen to maximize genetic and phenotypic diversity. Based on a photothermal time model, the flowering time variation scored in our field experiment was poorly correlated with the flowering time variation previously obtained under greenhouse conditions, reinforcing previous demonstrations of the importance of genotype by environment interactions in A. thaliana and the need to study adaptive variation under natural conditions. The use of 4,366 RILs provides great power for dissecting the genetic architecture of flowering time in A. thaliana under our specific field conditions. We describe more than 60 additive QTLs, all with relatively small to medium effects and organized in 5 major clusters. We show that QTL mapping increases our power to distinguish true from false associations in GWA mapping. QTL mapping also permits the identification of false negatives, that is, causative SNPs that are lost when applying GWA methods that control for population structure. Major genes underpinning flowering time in the greenhouse were not associated with flowering time in this study. Instead, we found a prevalence of genes involved in the regulation of the plant circadian clock. Furthermore, we identified new genomic regions lacking obvious candidate genes.