Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
30,122 result(s) for "exact simulation"
Sort by:
Exact Simulation of the SABR Model
The stochastic alpha-beta-rho (SABR) model becomes popular in the financial industry because it is capable of providing good fits to various types of implied volatility curves observed in the marketplace. However, no analytical solution to the SABR model exists that can be simulated directly. This paper explores the possibility of exact simulation for the SABR model. Our contribution is threefold. (i) We propose an exact simulation method for the forward price and its volatility in two special but practically interesting cases, i.e., when the elasticity β = 1, or when β < 1 and the price and volatility processes are instantaneously uncorrelated. Primary difficulties involved are how to simulate two random variables whose distributions can be expressed in terms of the Hartman-Watson and the noncentral chi-squared distribution functions, respectively. Two novel simulation schemes are proposed to achieve numerical accuracy, efficiency, and stability. One stems from numerical Laplace inversion and Asian option literature, and the other is based on recent developments in evaluating the noncentral chi-squared distribution functions in a robust way. Numerical examples demonstrate that our method is fast and accurate under various market environments. (ii) When β < 1 but the price and volatility processes are correlated, our simulation method becomes a semi-exact one. Numerical results suggest that it is still quite accurate when the time horizon is not long, e.g., no greater than one year. For long time horizons, a piecewise semi-exact simulation scheme is developed that reduces the biases substantially. (iii) For European option pricing under the SABR model, we propose a conditional simulation method, which reduces the variance of the plain simulation significantly, e.g., by more than 99%. The e-companion is available at https://doi.org/10.1287/opre.2017.1617 .
The normal law under linear restrictions: simulation and estimation via minimax tilting
Simulation from the truncated multivariate normal distribution in high dimensions is a recurrent problem in statistical computing and is typically only feasible by using approximate Markov chain Monte Carlo sampling. We propose a minimax tilting method for exact independently and identically distributed data simulation from the truncated multivariate normal distribution. The new methodology provides both a method for simulation and an efficient estimator to hitherto intractable Gaussian integrals. We prove that the estimator has a rare vanishing relative error asymptotic property. Numerical experiments suggest that the scheme proposed is accurate in a wide range of set-ups for which competing estimation schemes fail. We give an application to exact independently and identically distributed data simulation from the Bayesian posterior of the probit regression model.
Exact estimation for Markov chain equilibrium expectations
We introduce a new class of Monte Carlo methods, which we call exact estimation algorithms. Such algorithms provide unbiased estimators for equilibrium expectations associated with real-valued functionals defined on a Markov chain. We provide easily implemented algorithms for the class of positive Harris recurrent Markov chains, and for chains that are contracting on average. We further argue that exact estimation in the Markov chain setting provides a significant theoretical relaxation relative to exact simulation methods.
Exact simulation of max-stable processes
Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes their simulation difficult. Algorithms based on finite approximations are often inexact and computationally inefficient. We present a new algorithm for exact simulation of a max-stable process at a finite number of locations. It relies on the idea of simulating only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We further generalize the algorithm by Dieker & Mikosch (2015) for Brown-Resnick processes and use it for exact simulation via the spectral measure. We study the complexity of both algorithms, prove that our new approach via extremal functions is always more efficient, and provide closed-form expressions for their implementation that cover most popular models for max-stable processes and multivariate extreme value distributions. For simulation on dense grids, an adaptive design of the extremal function algorithm is proposed.
Exact simulation for multivariate Itô diffusions
We provide the first generic exact simulation algorithm for multivariate diffusions. Current exact sampling algorithms for diffusions require the existence of a transformation which can be used to reduce the sampling problem to the case of a constant diffusion matrix and a drift which is the gradient of some function. Such a transformation, called the Lamperti transformation, can be applied in general only in one dimension. So, completely different ideas are required for the exact sampling of generic multivariate diffusions. The development of these ideas is the main contribution of this paper. Our strategy combines techniques borrowed from the theory of rough paths, on the one hand, and multilevel Monte Carlo on the other.
Exact simulation of Ornstein–Uhlenbeck tempered stable processes
There are two types of tempered stable (TS) based Ornstein–Uhlenbeck (OU) processes: (i) the OU-TS process, the OU process driven by a TS subordinator, and (ii) the TS-OU process, the OU process with TS marginal law. They have various applications in financial engineering and econometrics. In the literature, only the second type under the stationary assumption has an exact simulation algorithm. In this paper we develop a unified approach to exactly simulate both types without the stationary assumption. It is mainly based on the distributional decomposition of stochastic processes with the aid of an acceptance–rejection scheme. As the inverse Gaussian distribution is an important special case of TS distribution, we also provide tailored algorithms for the corresponding OU processes. Numerical experiments and tests are reported to demonstrate the accuracy and effectiveness of our algorithms, and some further extensions are also discussed.
Efficient Simulation of Clustering Jumps with CIR Intensity
We introduce a broad family of generalised self-exciting point processes with CIR-type intensities, and we develop associated algorithms for their exact simulation. The underlying models are extensions of the classical Hawkes process, which already has numerous applications in modelling the arrival of events with clustering or contagion effect in finance, economics, and many other fields. Interestingly, we find that the CIR-type intensity, together with its point process, can be sequentially decomposed into simple random variables, which immediately leads to a very efficient simulation scheme. Our algorithms are also pretty accurate and flexible. They can be easily extended to further incorporate externally excited jumps, or, to a multidimensional framework. Some typical numerical examples and comparisons with other well-known schemes are reported in detail. In addition, a simple application for modelling a portfolio loss process is presented. The online appendix is available at https://doi.org/10.1287/opre.2017.1640
Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models
Inference for Dirichlet process hierarchical models is typically performed using Markov chain Monte Carlo methods, which can be roughly categorized into marginal and conditional methods. The former integrate out analytically the infinite-dimensional component of the hierarchical model and sample from the marginal distribution of the remaining variables using the Gibbs sampler. Conditional methods impute the Dirichlet process and update it as a component of the Gibbs sampler. Since this requires imputation of an infinite-dimensional process, implementation of the conditional method has relied on finite approximations. In this paper, we show how to avoid such approximations by designing two novel Markov chain Monte Carlo algorithms which sample from the exact posterior distribution of quantities of interest. The approximations are avoided by the new technique of retrospective sampling. We also show how the algorithms can obtain samples from functionals of the Dirichlet process. The marginal and the conditional methods are compared and a careful simulation study is included, which involves a non-conjugate model, different datasets and prior specifications.
Implied value-at-risk and model-free simulation
We propose a novel model-free approach for extracting the risk-neutral quantile function of an asset using options written on this asset. We develop two applications. First, we show how for a given stochastic asset model our approach makes it possible to simulate the underlying terminal asset value under the risk-neutral probability measure directly from option prices. Specifically, our approach outperforms existing approaches for simulating asset values for stochastic volatility models such as the Heston, the SVI, and the SABR models. Second, we estimate the option implied value-at-risk (VaR) and the option implied tail value-at-risk (TVaR) of a financial asset in a direct manner. We also provide an empirical illustration in which we use S &P 500 Index options to construct an implied VaR Index and we compare it with the VIX Index.
Exact Simulation of the Wishart Multidimensional Stochastic Volatility Model
In this article, we propose an exact simulation method of the Wishart multidimensional stochastic volatility (WMSV) model—a single asset model with a multidimensional Wishart variance process. Our method is based on analysis of the conditional characteristic function of the log-price given a terminal volatility level. In particular, we found an explicit expression for the conditional characteristic function for the Heston model. Numerical experiments demonstrate that our new method is much faster and reliable than the Euler discretization method.