Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
15,624 result(s) for "excretion"
Sort by:
Radioprotective Effect of Lidocaine on Neurotransmitter Agonist-Induced Secretion in Irradiated Salivary Glands. e60256
Background Previously we verified the radioprotective effect of lidocaine on the function and ultrastructure of salivary glands in rabbits. However, the underlying mechanism of lidocaine's radioprotective effect is unknown. We hypothesized that lidocaine, as a membrane stabilization agent, has a protective effect on intracellular neuroreceptor-mediated signaling and hence can help preserve the secretory function of salivary glands during radiotherapy. Methods and Materials Rabbits were irradiated with or without pretreatment with lidocaine before receiving fractionated radiation to a total dose of 35 Gy. Sialoscintigraphy and saliva total protein assay were performed before radiation and 1 week after the last radiation fraction. Isolated salivary gland acini were stimulated with either carbachol or adrenaline. Ca2+ influx in response to the stimulation with these agonists was measured using laser scanning confocal microscopy. Results The uptake of activity and the excretion fraction of the parotid glands were significantly reduced after radiation, but lidocaine had a protective effect. Saliva total protein concentration was not altered after radiation. For isolated acini, Ca2+ influx in response to stimulation with carbachol, but not adrenaline, was impaired after irradiation; lidocaine pretreatment attenuated this effect. Conclusions Lidocaine has a radioprotective effect on the capacity of muscarinic agonist-induced water secretion in irradiated salivary glands.
My messy body
Explores the sometimes yucky functions of the body: why are vomit, pus, and snot sometimes good for us? And yes, pee and poo are also on the list.
Urinary iodine excretion and optimal time point for sampling when estimating 24-h urinary iodine
Iodine deficiency may cause thyroid dysfunction. The iodine intake in a population is measured by urinary iodine concentration (UIC) in spot samples or 24-h urinary iodine excretion (24UIE). 24UIE is considered the gold standard and may be estimated using an equation including UIC, urinary creatinine concentration, sex and age (e24UIE). The aims of this study were to evaluate the preferable timing of UIC when using this equation and assess the variability of UIE. Sixty healthy non-smoking women (n 31) and men (n 29) were included in Gothenburg, Sweden. Twelve urine samples were collected at six fixed times on two separate days. Variability was calculated for UIC, 24UIE, e24UIE, iodine excretion per hour (iHr) and UIC adjusted for creatinine and specific gravity. Median 24UIE was 156 µg/24 h and the median UIC (all spot samples) was 104 µg/l. UIC (P < 0·001), 24UIE (P = 0·001) and e24UIE (P < 0·001) were significantly higher in men. e24UIE was relatively similar to 24UIE. However, when e24UIE was calculated from UIC in the first void, it was about 15 % lower than 24UIE (P < 0·001). iHr was lowest in the morning and highest in the afternoon. Median iHr was higher in men (7·4 v. 5·3 µg/h, P < 0·001). The variability of UIE was higher within individuals than between individuals. This study suggests that most time points for estimation of individual 24UIE are appropriate, but they should preferably not be collected in the first void.
Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study
WHO recommends that populations consume less than 2 g/day sodium as a preventive measure against cardiovascular disease, but this target has not been achieved in any country. This recommendation is primarily based on individual-level data from short-term trials of blood pressure (BP) without data relating low sodium intake to reduced cardiovascular events from randomised trials or observational studies. We investigated the associations between community-level mean sodium and potassium intake, cardiovascular disease, and mortality. The Prospective Urban Rural Epidemiology study is ongoing in 21 countries. Here we report an analysis done in 18 countries with data on clinical outcomes. Eligible participants were adults aged 35–70 years without cardiovascular disease, sampled from the general population. We used morning fasting urine to estimate 24 h sodium and potassium excretion as a surrogate for intake. We assessed community-level associations between sodium and potassium intake and BP in 369 communities (all >50 participants) and cardiovascular disease and mortality in 255 communities (all >100 participants), and used individual-level data to adjust for known confounders. 95 767 participants in 369 communities were assessed for BP and 82 544 in 255 communities for cardiovascular outcomes with follow-up for a median of 8·1 years. 82 (80%) of 103 communities in China had a mean sodium intake greater than 5 g/day, whereas in other countries 224 (84%) of 266 communities had a mean intake of 3–5 g/day. Overall, mean systolic BP increased by 2·86 mm Hg per 1 g increase in mean sodium intake, but positive associations were only seen among the communities in the highest tertile of sodium intake (p<0·0001 for heterogeneity). The association between mean sodium intake and major cardiovascular events showed significant deviations from linearity (p=0·043) due to a significant inverse association in the lowest tertile of sodium intake (lowest tertile <4·43 g/day, mean intake 4·04 g/day, range 3·42–4·43; change –1·00 events per 1000 years, 95% CI –2·00 to –0·01, p=0·0497), no association in the middle tertile (middle tertile 4·43–5·08 g/day, mean intake 4·70 g/day, 4·44–5.05; change 0·24 events per 1000 years, –2·12 to 2·61, p=0·8391), and a positive but non-significant association in the highest tertile (highest tertile >5·08 g/day, mean intake 5·75 g/day, >5·08–7·49; change 0·37 events per 1000 years, –0·03 to 0·78, p=0·0712). A strong association was seen with stroke in China (mean sodium intake 5·58 g/day, 0·42 events per 1000 years, 95% CI 0·16 to 0·67, p=0·0020) compared with in other countries (4·49 g/day, –0·26 events, –0·46 to –0·06, p=0·0124; p<0·0001 for heterogeneity). All major cardiovascular outcomes decreased with increasing potassium intake in all countries. Sodium intake was associated with cardiovascular disease and strokes only in communities where mean intake was greater than 5 g/day. A strategy of sodium reduction in these communities and countries but not in others might be appropriate. Population Health Research Institute, Canadian Institutes of Health Research, Canadian Institutes of Health Canada Strategy for Patient-Oriented Research, Ontario Ministry of Health and Long-Term Care, Heart and Stroke Foundation of Ontario, and European Research Council.
Fractional Excretion of Urate is Positively Associated with Type 2 Diabetes in HUA Patients: A Cross-Sectional Study
People with hyperuricemia (HUA) are often related to metabolic disorders such as diabetes, metabolic syndrome (MetS), and obesity. However, the correlation between excretion of uric acid and these diseases is unclear. Our study aimed to explore the relationship between uric acid excretion and type 2 diabetes (T2D). A total of 228 HUA patients from Tianjin Medical University General Hospital from 2022 to 2023 were included in this study. We collected demographic, biochemical, and anthropometric data on each subject. Urine uric acid excretion (UUAE) was calculated enzymatically from a single urine collection that lasted 24 hours. And fractional excretion of uric acid (FEUA) was calculated from serum uric acid and creatinine and uric acid and creatinine. Binary logistic regression modeling assessed the association between uric acid excretion and T2D. Of the 228 subjects, 13.4% had T2D and 48.7% had obesity. The obesity group had a lower FEUA (p<0.05) and a higher UUAE compared to the control group (p<0.05). And FEUA had a stronger correlation with the risk of T2D (p<0.001). Also, there was a negative association between BMI and FEUA and a positive link between BMI and UUAE in the outpatients. Increased FEUA levels were significantly associated with T2D in HUA patients. Therefore, routine calculating of FEUA is essential for proper diagnosis and appropriate treatment T2D of in HUA patients.
Time course of plasma urea and urinary urea excretion in patients with a prolonged ICU stay
Whereas urinary creatinine excretion (UCE) is an established marker of muscle mass, both in critically ill and non-critically ill patients, analysis of urinary urea excretion (UUE) may allow estimation of proteolysis that is associated with critical illness. We evaluated the time courses of plasma urea and creatinine as well UUE and UCE in critically ill patients with a prolonged ICU stay. Our goal was to evaluate changes in plasma urea and creatinine in conjunction with their urinary excretion, to get a better understanding of urea handling in ICU patients. From 2002 to 2021, plasma urea and creatinine, UUE and UCE were determined in routinely obtained 24 h urine samples between ICU admission and day 30, in adult patients with an ICU-stay ≥ 28d. Urea-to-creatinine ratios in plasma and urine were calculated. Patients with stage 3 acute kidney injury (AKI) were excluded. Analyses were performed separately for females and males and for patients with and without acute renal failure to account for respectively differences in muscle mass and impaired renal function. Of 47,120 patients, who were admitted to the ICU between 2002 and 2021, 638 patients met the inclusion criteria. During the first 10 days mean ± SD plasma urea increased from 9.7 ± 6.0 mmol/L at ICU admission to 12.4 ± 7.9 mmol/L ( P  < 0.001) on day 11 and decreased afterwards with a rate of 0.1 mmol/l/d. UUE peaked at 590 ± 317 mmol/day on day 13 whereas UCE peaked already on day 4. Males had higher plasma urea, plasma creatinine, UUE and UCE than females. Plasma and urinary urea-to-creatinine ratio (UCR) stabilized after day 7, with a gradual increase in plasma UCR and urinary UCR between day 7 and day 30. Similar courses, although less pronounced, were seen in patients without AKI. The course of urea in critically ill patients is characterized by an initial rise of both plasma urea and urinary urea excretion, presumably due to increased catabolism of endogenous and exogenous protein in the first week of ICU admission. Subsequently, UUE and UCE declined steadily in a rate that was comparable to the known loss of muscle mass during ICU admission of approximately 1%/day.
Trophic transfer and bioaccumulation of nanoplastics in Coryphaena hippurus
Ocean plastic pollution is a global concern, exacerbated by the distinctive physiochemical characteristics of nanoplastics (NPs), making it crucial to study the impacts on marine animals, particularly fish, given their ecological and economic importance. Both trophic transfer and waterborne exposure are potential modes of NP entry into seafood for human consumption Although the majority of studies have focused on in-vitro impacts of NP exposure in fish, in-vivo methods can offer a more holistic understanding of these impacts. This study investigates polystyrene NP transfer to Coryphaena hippurus (mahi-mahi) larvae, a widely consumed fish and significant marine predator, during the early life stage. Brachionus plicatilis (rotifers) were exposed to NPs, and subsequently fed to C. hippurus larvae, with exposure duration ranging from 24 to 96 h. Significant NP transfer was observed via the food chain, varying with exposure duration. A depuration study over 72 h, simulating intermittent NP exposure, revealed substantial NP excretion but also notable retention in the larvae. Biodistribution analysis indicated that most NPs accumulated in the gut, with a significant portion remaining post-depuration and some translocating to other body areas containing vital organs like the heart, liver, and gall bladder. Despite no significant effects on body length and eye diameter during this short study period, histopathological analysis revealed intestinal tissue damage in the larvae. Overall, this study provides valuable insight into the trophic transfer of NPs in marine food webs, emphasizing the need for further research on ecological impacts and highlighting the importance of addressing NP contamination to protect marine ecosystems and food safety.