Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "exomiRs"
Sort by:
Breast Milk-Derived Extracellular Vesicles Enriched in Exosomes From Mothers With Type 1 Diabetes Contain Aberrant Levels of microRNAs
The breast milk plays a crucial role in shaping the initial intestinal microbiota and mucosal immunity of the infant. Interestingly, breastfeeding has proven to be protective against the early onset of immune-mediated diseases including type 1 diabetes. Studies have shown that exosomes from human breast milk are enriched in immune-modulating miRNAs suggesting that exosomal miRNAs (exomiRs) transferred to the infant could play a critical role in the development of the infant's immune system. We extracted exomiRs from breast milk of 52 lactating mothers (26 mothers with type 1 diabetes and 26 healthy mothers), to identify any differences in the exomiR content between the two groups. Small RNA-sequencing was performed to identify known and novel miRNAs in both groups. A total of 631 exomiRs were detected by small RNA sequencing including immune-related miRNAs such as hsa-let-7c, hsa-miR-21, hsa-miR-34a, hsa-miR-146b, and hsa-miR-200b. In addition, ~200 novel miRNAs were identified in both type 1 diabetes and control samples. Among the known miRNAs, nine exomiR's were found differentially expressed in mothers with type 1 diabetes compared to healthy mothers. The highly up-regulated miRNAs, hsa-miR-4497, and hsa-miR-3178, increased lipopolysaccharide-induced expression and secretion of tumor necrosis factor α (TNFα) in human monocytes. The up-regulated miRNA target genes were significantly enriched for longevity-regulating pathways and FoxO signaling. Our findings suggest a role of breast milk-derived exomiRs in modulating the infant's immune system.
Exosomal microRNAs in colorectal cancer: Overcoming barriers of the metastatic cascade (Review)
The journey of cancer cells from a primary tumor to distant sites is a multi-step process that involves cellular reprogramming, the breaking or breaching of physical barriers and the preparation of a pre-metastatic niche for colonization. The loss of adhesion between cells, cytoskeletal remodeling, the reduction in size and change in cell shape, the destruction of the extracellular matrix, and the modification of the tumor microenvironment facilitate migration and invasion into surrounding tissues. The promotion of vascular leakiness enables intra- and extravasation, while angiogenesis and immune suppression help metastasizing cells become established in the new site. Tumor-derived exosomes have long been known to harbor microRNAs (miRNAs or miRs) that help prepare secondary sites for metastasis; however, their roles in the early and intermediate steps of the metastatic cascade are only beginning to be characterized. The present review article presents a summary and discussion of the miRNAs that form part of colorectal cancer (CRC)-derived exosomal cargoes and which play distinct roles in epithelial to mesenchymal plasticity and metastatic organotropism. First, an overview of epithelial-to-mesenchymal transition (EMT), metastatic organotropism, as well as exosome biogenesis, cargo sorting and uptake by recipient cells is presented. Lastly, the potential of these exosomal miRNAs as prognostic biomarkers for metastatic CRC, and the blocking of these as a possible therapeutic intervention is discussed.
Serum Exosomal miRNAs for Grading Hepatic Fibrosis Due to Schistosomiasis
Chronic infection with Schistosoma japonicum or Schistosoma mansoni results in hepatic fibrosis of the human host. The staging of fibrosis is crucial for prognosis and to determine the need for treatment of patients with schistosomiasis. This study aimed to determine whether there is a correlation between the levels of serum exosomal micro-ribonucleic acids (miRNAs) (exomiRs) and fibrosis progression in schistosomiasis. Reference gene (RG) validation was initially carried out for the analysis of serum exomiRs expression in staging liver fibrosis caused by schistosome infection. The expression levels of liver fibrosis-associated exomiRs in serum were determined in a murine schistosomiasis model and in a cohort of Filipino schistosomiasis japonica patients (n = 104) with different liver fibrosis grades. Of twelve RG candidates validated, miR-103a-3p and miR-425-5p were determined to be the most stable genes in the murine schistosomiasis model and subjects from the schistosomiasis-endemic area, respectively. The temporal expression profiles of nine fibrosis-associated serum exomiRs, as well as their correlations with the liver pathologies, were determined in C57BL/6 mice during S. japonicum infection. The serum levels of three exomiRs (miR-92a-3p, miR-146a-5p and miR-532-5p) were able to distinguish subjects with fibrosis grades I-III from those with no fibrosis, but only the serum level of exosomal miR-146a-5p showed potential for distinguishing patients with mild (grades 0–I) versus severe fibrosis (grades II–III). The current data imply that serum exomiRs can be a supplementary tool for grading liver fibrosis in hepatosplenic schistosomiasis with moderate accuracy.
Circulating exosomal microRNAs as potential prognostic biomarkers in gastrointestinal cancers: a systematic review and meta-analysis
Background Recent reports suggested that circulating exosomal microRNAs (exomiRs) may serve as non-invasive prediction biomarkers in gastrointestinal (GI) cancers, yet their clinicopathological and prognostic values need to be more clarified. Hence, the present meta-analysis was aimed to quantitatively assess the evidence regarding the association between circulating exomiRs and prognosis in GI cancer patients. Methods A comprehensive search was carried out in prominent literature databases, including PubMed, ISI Web of Science, Scopus, and Embase. Odds ratios (ORs) or hazard ratios (HRs) with 95% confidence intervals (CIs) were gathered to evaluate the strength of the association. The quality assessment was investigated through the Newcastle-Ottawa Scale (NOS) and publication bias via Eggers’ test and funnel plots. Results A total of 47 studies, comprising of 4881 patients, were considered eligible for this meta-analysis. Both up-regulated and down-regulated circulating exomiRs are significantly associated with differentiation (HR = 1.353, P = 0.015; HR = 1.504, P = 0.016), TNM stage (HR = 2.058, P < 0.001; HR = 2.745, P < 0.001), lymph node metastasis (HR = 1.527, P = 0.004; HR = 2.009, P = 0.002), distant metastasis (HR = 2.006, P < 0.001; HR = 2.799, P = 0.002), worse overall survival (OS) (HR = 2.053, P < 0.001; HR = 1.789, P = 0.001) and poorer disease/relapse/progression-free survival (DFS/RFS/PFS) (HR = 2.086, P < 0.001; HR = 1.607, P = 0.001) in GI cancer patients, respectively. In addition, subgroup analyses based on seven subcategories indicated the robustness of the association. The majority of findings were lack of publication bias except for the association between up-regulated exomiRs and OS or DFS/RFS/PFS and for the down-regulated exomiRs and TNM stage. Conclusion This study supports that up- and down-regulated circulating exomiRs are associated with poorer survival outcomes and could be served as potential prognostic biomarkers in GI cancers. Given the limitations of the current findings, such as significant heterogeneity, more investigations are needed to fully clarify the exomiRs prognostic role.
Evaluating the presence of deregulated tumoral onco-microRNAs in serum-derived exosomes of gastric cancer patients as noninvasive diagnostic biomarkers
Introduction: Exosomal microRNAs (miRNAs) are emerging diagnostic biomarkers for different types of cancers. We aim to detect gastric cancer (GC)-specific miRNAs in serum exosomes with diagnostic potential. Methods: A pair of 43 tumor and tumor-adjacent tissue biopsies obtained from GC patients, also 5 mL peripheral blood (following 12h fasting) were collected from the same patients and healthy controls (HCs). QIAGEN miRCURY LNA miRNA Focus PCR Panel applied to screen differentially expressed onco-miRNAs. The candidate miRNAs with the highest fold changes proceeded for validation by qRT-PCR in individuals. Results: We identified that exosomal miR-10a-5p, miR-19b-3p, miR-215-5p, and miR-18a-5p were significantly upregulated in GC patient’s exosomes in contrast to HCs exosomes, Roc curve analysis indicated area under the ROC curve (AUC) of 0.801, 0.721, 0.780 and 0.736 respectively. The Roc curve analysis for the combined signature of four exosomal miRNAs indicated AUC of 0.813. Also, Spearman's correlation coefficients indicated that the miRNA expression is highly correlated between tumor and exosome. Conclusion: Herein, we specifically identified four miRNAs in serum exosomes of GC patients for a diagnostic purpose which are directly associated with tumoral miRNA expression profile.