Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"fast point feature histogram"
Sort by:
Fast Registration Algorithm for Laser Point Cloud Based on 3D-SIFT Features
2025
In response to the issues of slow convergence and the tendency to fall into local optima in traditional iterative closest point (ICP) point cloud registration algorithms, this study presents a fast registration algorithm for laser point clouds based on 3D scale-invariant feature transform (3D-SIFT) feature extraction. First, feature points are preliminarily extracted using a normal vector threshold; then, more high-quality feature points are extracted using the 3D-SIFT algorithm, effectively reducing the number of point cloud registrations. Based on the extracted feature points, a coarse registration of the point cloud is performed using the fast point feature histogram (FPFH) descriptor combined with the sample consensus initial alignment (SAC-IA) algorithm, followed by fine registration using the point-to-plane ICP algorithm with a symmetric target function. The experimental results show that this algorithm significantly improved the registration efficiency. Compared with the traditional SAC−IA+ICP algorithm, the registration accuracy of this algorithm increased by 29.55% in experiments on a public dataset, and the registration time was reduced by 81.01%. In experiments on actual collected data, the registration accuracy increased by 41.72%, and the registration time was reduced by 67.65%. The algorithm presented in this paper maintains a high registration accuracy while greatly reducing the registration speed.
Journal Article
A Point Cloud Data-Driven Pallet Pose Estimation Method Using an Active Binocular Vision Sensor
by
Fan, Zhengshuai
,
Lu, Jiansha
,
Lang, Yiding
in
Accuracy
,
adaptive Gaussian weight-based fast point feature histogram
,
Algorithms
2023
Pallet pose estimation is one of the key technologies for automated fork pickup of driverless industrial trucks. Due to the complex working environment and the enormous amount of data, the existing pose estimation approaches cannot meet the working requirements of intelligent logistics equipment in terms of high accuracy and real time. A point cloud data-driven pallet pose estimation method using an active binocular vision sensor is proposed, which consists of point cloud preprocessing, Adaptive Gaussian Weight-based Fast Point Feature Histogram extraction and point cloud registration. The proposed method overcomes the shortcomings of traditional pose estimation methods, such as poor robustness, time consumption and low accuracy, and realizes the efficient and accurate estimation of pallet pose for driverless industrial trucks. Compared with traditional Fast Point Feature Histogram and Signature of Histogram of Orientation, the experimental results show that the proposed approach is superior to the above two methods, improving the accuracy by over 35% and reducing the feature extraction time by over 30%, thereby verifying the effectiveness and superiority of the proposed method.
Journal Article
Point Cloud Registration Based on Fast Point Feature Histogram Descriptors for 3D Reconstruction of Trees
2023
Three-dimensional (3D) reconstruction is an essential technique to visualize and monitor the growth of agricultural and forestry plants. However, inspecting tall plants (trees) remains a challenging task for single-camera systems. A combination of low-altitude remote sensing (an unmanned aerial vehicle) and a terrestrial capture platform (a mobile robot) is suggested to obtain the overall structural features of trees including the trunk and crown. To address the registration problem of the point clouds from different sensors, a registration method based on a fast point feature histogram (FPFH) is proposed to align the tree point clouds captured by terrestrial and airborne sensors. Normal vectors are extracted to define a Darboux coordinate frame whereby FPFH is calculated. The initial correspondences of point cloud pairs are calculated according to the Bhattacharyya distance. Reliable matching point pairs are then selected via random sample consensus. Finally, the 3D transformation is solved by singular value decomposition. For verification, experiments are conducted with real-world data. In the registration experiment on noisy and partial data, the root-mean-square error of the proposed method is 0.35% and 1.18% of SAC-IA and SAC-IA + ICP, respectively. The proposed method is useful for the extraction, monitoring, and analysis of plant phenotypes.
Journal Article
Iterative closest point registration for fast point feature histogram features of a volume density optimization algorithm
2020
Motivated by the high speed but insufficient precision of the existing fast point feature histogram algorithm, a new fast point feature histogram registration algorithm based on density optimization is proposed. In this method, a 44-section blank feature histogram is first established, and then a principal component analysis is implemented to calculate the normal of each point in the point cloud. By translating the coordinate system in the established local coordinate system, the normal angle of each point pair and its weighted neighborhood are obtained, and then a fast point feature histogram with 33 sections is established. The reciprocal of the volume density for the central point and its weighted neighborhood are calculated simultaneously. The whole reciprocal space is divided into 11 sections. Thus, a density fast point feature histogram with 44 sections is obtained. On inputting the testing models, the initial pose of the point cloud is adjusted using the traditional fast point feature histogram and the proposed algorithms, respectively. Then, the iterative closest point algorithm is incorporated to complete the fine registration test. Compared with the traditional fine registration test algorithm, the proposed optimization algorithm can obtain 44 feature parameters under the condition of a constant time complexity. Moreover, the proposed optimization algorithm can reduce the standard deviation by 8.6% after registration. This demonstrates that the proposed method encapsulates abundant information and can achieve a high registration accuracy.
Journal Article
Virtual Namesake Point Multi-Source Point Cloud Data Fusion Based on FPFH Feature Difference
2021
There are many sources of point cloud data, such as the point cloud model obtained after a bundle adjustment of aerial images, the point cloud acquired by scanning a vehicle-borne light detection and ranging (LiDAR), the point cloud acquired by terrestrial laser scanning, etc. Different sensors use different processing methods. They have their own advantages and disadvantages in terms of accuracy, range and point cloud magnitude. Point cloud fusion can combine the advantages of each point cloud to generate a point cloud with higher accuracy. Following the classic Iterative Closest Point (ICP), a virtual namesake point multi-source point cloud data fusion based on Fast Point Feature Histograms (FPFH) feature difference is proposed. For the multi-source point cloud with noise, different sampling resolution and local distortion, it can acquire better registration effect and improve the accuracy of low precision point cloud. To find the corresponding point pairs in the ICP algorithm, we use the FPFH feature difference, which can combine surrounding neighborhood information and have strong robustness to noise, to generate virtual points with the same name to obtain corresponding point pairs for registration. Specifically, through the establishment of voxels, according to the F2 distance of the FPFH of the target point cloud and the source point cloud, the convolutional neural network is used to output a virtual and more realistic and theoretical corresponding point to achieve multi-source Point cloud data registration. Compared with the ICP algorithm for finding corresponding points in existing points, this method is more reasonable and more accurate, and can accurately correct low-precision point cloud in detail. The experimental results show that the accuracy of our method and the best algorithm is equivalent under the clean point cloud and point cloud of different resolutions. In the case of noise and distortion in the point cloud, our method is better than other algorithms. For low-precision point cloud, it can better match the target point cloud in detail, with better stability and robustness.
Journal Article
Point cloud registration with quantile assignment
by
Güdükbay, Uğur
,
Karaşan, Oya
,
Doğan, Yalım
in
Algorithms
,
Communications Engineering
,
Computer Science
2024
Point cloud registration is a fundamental problem in computer vision. The problem encompasses critical tasks such as feature estimation, correspondence matching, and transformation estimation. The point cloud registration problem can be cast as a quantile matching problem. We refined the quantile assignment algorithm by integrating prevalent feature descriptors and transformation estimation methods to enhance the correspondence between the source and target point clouds. We evaluated the performances of these descriptors and methods with our approach through controlled experiments on a dataset we constructed using well-known 3D models. This systematic investigation led us to identify the most suitable methods for complementing our approach. Subsequently, we devised a new end-to-end, coarse-to-fine pairwise point cloud registration framework. Finally, we tested our framework on indoor and outdoor benchmark datasets and compared our results with state-of-the-art point cloud registration methods.
Journal Article
A Coarse-to-Fine Registration Approach for Point Cloud Data with Bipartite Graph Structure
2022
Alignment is a critical aspect of point cloud data (PCD) processing, and we propose a coarse-to-fine registration method based on bipartite graph matching in this paper. After data pre-processing, the registration progress can be detailed as follows: Firstly, a top-tail (TT) strategy is designed to normalize and estimate the scale factor of two given PCD sets, which can combine with the coarse alignment process flexibly. Secondly, we utilize the 3D scale-invariant feature transform (3D SIFT) method to extract point features and adopt fast point feature histograms (FPFH) to describe corresponding feature points simultaneously. Thirdly, we construct a similarity weight matrix of the source and target point data sets with bipartite graph structure. Moreover, the similarity weight threshold is used to reject some bipartite graph matching error-point pairs, which determines the dependencies of two data sets and completes the coarse alignment process. Finally, we introduce the trimmed iterative closest point (TrICP) algorithm to perform fine registration. A series of extensive experiments have been conducted to validate that, compared with other algorithms based on ICP and several representative coarse-to-fine alignment methods, the registration accuracy and efficiency of our method are more stable and robust in various scenes and are especially more applicable with scale factors.
Journal Article
Onboard Real-time Object Surface Recognition for a Small Indoor Mobile Platform Based on Surface Component Ratio Histogram
2019
Since a RGB-D sensor provides rich information about the scene, various object recognition schemes and low-level image descriptors can be used to improve the SLAM performance. However, a cleaning robot, which is usually flat and thus the camera is close to the floor, usually only has a partial view of the objects in front of the camera; therefore, conventional object recognition schemes based on the complete view of objects are not suitable. To address this problem, we introduce a novel object surface recognition algorithm based on the proposed surface component ratio histogram (SCRH). SCRH is a surface descriptor which describes the geometrical shape of the partial view of the object. Without any pre-trained model of the objects, SCRH provides a way to deal with the unexpected objects which the robot encounters during the navigation. SCRH was evaluated using several objects lying on the floor of which the identities are not known in advance. The experimental results show that objects are successfully discriminated based on their surfaces and SCRH is robust for object surface recognition.
Journal Article
基于三维扫描的机车走行部螺栓识别与定位
2018
使用激光线结构光扫描仪得到机车走行部三维点云数据,实现了在三维数据中对螺栓进行自动识别和定位。使用关键点的快速点特征直方图(FPFH)来描述点云特征,首先,将目标区域与预存螺栓模板进行特征匹配,并为目标区域的匹配点分配权重;然后,使用均匀的种子点在带权重的匹配点集中进行K-means聚类,并删除点数过少的聚类簇;最后,使用Hough变换的方法为经过筛选的聚类簇建立严格的分类器,判断出螺栓的有无和精确位置。实验证明了该方法的有效性。
Journal Article
A fast RFID image matching algorithm for multi-tag identification and distribution optimization
2021
We propose an improved image matching algorithm that combines the minimum feature value algorithm to extract feature points and the direction gradient histogram to calculate the description vector. This algorithm is oriented to RFID multi-tag identification and distribution optimization in the actual scenario, and the traditional SURF algorithm has the problems of low matching accuracy and high complexity in multi-tag matching. This algorithm effectively improves the positioning accuracy of the RFID multi-tag positioning system. The experimental results show that the matching success rate of the improved algorithm in this paper is 87.4%, which is 50% higher than the SURF algorithm. Not only the matching accuracy is greatly improved, but the running speed is also increased by 48%. The algorithm in this paper has high matching accuracy and real-time performance.It provides an effective way for RFID multi-tag real-time fast matching and precise positioning.
Journal Article