Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,298 result(s) for "fast response"
Sort by:
Cavity Flow Instabilities in a Purged High-Pressure Turbine Stage
As designers push engine efficiency closer to thermodynamic limits, the analysis of flow instabilities developed in a high-pressure turbine (HPT) is crucial to minimizing aerodynamic losses and optimizing secondary air systems. Purge flow, while essential for protecting turbine components from thermal stress, significantly impacts the overall efficiency of the engine and is strictly connected to cavity modes and rim-seal instabilities. This paper presents an experimental investigation of these instabilities in an HPT stage, tested under engine-representative flow conditions in the short-duration turbine rig of the von Karman Institute. As operating conditions significantly influence instability behavior, this study provides valuable insight for future turbine design. Fast-response pressure measurements reveal asynchronous flow instabilities linked to ingress–egress mechanisms, with intensities modulated by the purge rate (PR). The maximum strength is reached at PR = 1.0%, with comparable intensities persisting for higher rates. For lower PRs, the instability diminishes as the cavity becomes unsealed. An analysis based on the cross-power spectral density is applied to quantify the characteristics of the rotating instabilities. The speed of the asynchronous structures exhibits minimal sensitivity to the PR, approximately 65% of the rotor speed. In contrast, the structures’ length scale shows considerable variation, ranging from 11–12 lobes at PR = 1.0% to 14 lobes for PR = 1.74%. The frequency domain analysis reveals a complex modulation of these instabilities and suggests a potential correlation with low-engine-order fluctuations.
Improving the Performance of a Reduced‐Order Mass‐Consistent Model for Urban Environments and Complex Terrain With a Higher‐Order Geometrical Representation
Solid structures (buildings and topography) act as obstacles and significantly influence the wind flow. Because of their importance, faithfully representing the geometry of structures in numerical predictions is critical to modeling accurate wind fields. A higher‐order geometry representation (the cut‐cell method) is incorporated in the mass‐consistent wind model, Quick Environmental System (QES)‐Winds. To represent the differences between a stair‐step and the cut‐cell method, an urban case study (the Oklahoma City JU2003 experiments) and a complex terrain case (from the MATERHORN campaign) are modeled in QES‐Winds. Comparison between the simulation results with the stair‐step and cut‐cell methods and the measured data for sensors close to walls and buildings showed that the sensitivity of the cut‐cell method to changes in resolution is less than the stair‐step method. Another way to improve the effects of solid geometries on the flow is to correct the velocity gradient near the surface. QES‐Winds solves a conservation of mass equation and not a conservation of momentum equation. This means that QES‐Winds overestimates velocity gradients near the surface which leads to higher rates of scalar transport. The near‐surface parameterization is designed to correct the tangential near‐surface velocity component using the logarithmic assumption. Results, including the near‐wall parameterization, are evaluated with data from the Granite Mountain case (the MATERHORN campaign), which indicates that the parameterization slightly improves the performance of the model for cells near the surface. The new geometry representation and near‐wall parameterization added to a mass‐consistent platform, enhances the model's ability to simulate the effects of solid geometries on wind fields. Plain Language Summary Solid geometries (buildings and the earth's surface) shape the airflow in cities and over topography. To accurately model the wind field, these important structures need to be represented correctly in numerical models. Quick Environmental System (QES)‐Winds previously used a stair‐step or block‐building method to process solid geometries. To improve geometry representation in QES‐Winds, a cut‐cell (higher‐order) method is developed in QES‐Winds. The cut‐cell method provides the ability to have cells that are partially occupied by solid geometries. Three test cases are utilized in this research to show the differences between the stair‐step and cut‐cell methods. The cut‐cell results are more consistent over a range of grid sizes which means that higher resolution is not required for accurate modeling. Solid structures greatly influence the rate of change of wind speed near the surface. QES‐Winds does not include the momentum effects. As a result, QES‐Winds overestimates the rate of change of velocity near the surface which means higher scalar transport from the surface. A near‐wall parameterization is incorporated into QES‐Winds to modify the velocity gradient near the surface and improve the transport rate. The results for the complex terrain (Granite Mountain) test case showed that the parameterization improves the model performance near the solid surface. Key Points Cut‐cell method, a higher‐order geometry representation, and a near‐surface velocity gradient correction are implemented in Quick Environmental System‐Winds Cut‐cell method results are mostly independent of grid sizes and represent the wind field more accurately than stair‐step, especially at lower resolutions The near‐wall parameterization improves the velocity gradient near the surface which could lead to better estimation of scalar transport
Fast Responsive, Reversible Colorimetric Nanoparticle-Hydrogel Complexes for pH Monitoring
Hydrogels containing redox-sensitive colorimetric nanoparticles (NPs) have been used to sense ambient pH in many fields owing to their simple and fast visualization capabilities. However, real-time pH monitoring still has limitations due to its poor response rate and irreversibility. Herein, we developed a fast responsive colorimetric hydrogel called ferrocene adsorption colorimetric hydrogel (FACH). Ferrocene, an organometallic compound, plays a vital role as an electron transfer mediator (i.e., redox catalyst) within the hydrogel network. FACH shows fast color change performance with high reactivity and penetrability to ambient pH changes. In detail, FACH shows distinct color change within 2 min under various pH conditions from four to eight, with good reliability. The speed for color change of FACH is approximately six times faster than that of previously developed colorimetric hydrogels, suggesting the fastest hydrogel-based colorimetric pH sensor. Furthermore, FACH shows reversibility and repeatability of the redox process, indicating scalable utility as a sustainable pH monitoring platform.
A comprehensive aerodynamic-thermal-mechanical design method for fast response turbocharger applied in aviation piston engines
Limited by the poor transient response performance of turbochargers, the dynamic performance of aviation piston engines tends to deteriorate. In a bid to enhance the turbocharger's acceleration capabilities, this study scrutinizes various factors impacting its performance. Based on the operational principles and transient response process of the turbocharger, three types of inertia—namely, aerodynamic inertia (ADI), thermal inertia (TI), and mechanical inertia (MI) — are identified and addressed for design. To begin, this paper pioneers the innovative definition of a method for evaluating the transient response performance of the turbocharger. This method incorporates the introduction of an ADI parameter, inspired by the definition of MI. Subsequently, a thin-walled volute design with a low Biot number and a lightweight turbine impeller is introduced to reduce the turbocharger's TI and MI. The simulation results of the flow field distribution within the volute and diffuser demonstrate the comprehensive design method's effectiveness in improving gas pressure and temperature distributions in these components. Notably, the pressure distribution fluctuation in the constant moment-of-momentum volute (CMV) is 62.8% lower than that in the constant velocity moment volute (CVMV). The low-TI thin-walled volute not only enhances the turbocharger's response speed but also reduces its weight by approximately 40%. The impact of three types of inertia on the engine's response speed is quantified as follows: ADI (94%) > MI (5%) > TI (1%). This conclusion has been verified through test results of both the turbocharger and the engine. This design method not only significantly improves the turbocharger's response performance but also offers valuable insights for the optimal design of other blade mechanical systems.
Hybrid Model Predictive Control Strategy of Supercapacitor Energy Storage System Based on Double Active Bridge
In order to solve the problem of which the dynamic response of a supercapacitor (SC) is limited due to the mismatch dynamic characteristics between the DC/DC converter and supercapacitor in an energy storage system, this paper proposes a hybrid model predictive control strategy based on a dual active bridge (DAB). The hybrid model predictive control model considers the supercapacitor and DAB in a unified way, including the equivalent series resistance and capacitance parameters of the SC. The method can obtain a large charging and discharging current of the SC, thereby not only improving the overall response speed of the system, but also expanding the actual capacity utilization range of the SC. The simulation results show that compared with the model prediction method of the dual active bridge converter, the proposed control method can effectively improve the overall response speed of the system, which can be improved by at least 0.4 ms. In addition, the proposed method increases the actual upper limit of the SC voltage, reduces the actual lower limit of the SC voltage, and then expands the actual capacity utilization range of the SC by 18.63%. The proposed method has good application prospects in improving the dynamic response performance of energy storage systems.
Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments
Continuous, wide field-of-view, high-efficiency, and fast-response beam steering devices are desirable in a plethora of applications. Liquid crystals (LCs)—soft, bi-refringent, and self-assembled materials which respond to various external stimuli—are especially promising for fulfilling these demands. In this paper, we review recent advances in LC beam steering devices. We first describe the general operation principles of LC beam steering techniques. Next, we delve into different kinds of beam steering devices, compare their pros and cons, and propose a new LC-cladding waveguide beam steerer using resistive electrodes and present our simulation results. Finally, two future development challenges are addressed: Fast response time for mid-wave infrared (MWIR) beam steering, and device hybridization for large-angle, high-efficiency, and continuous beam steering. To achieve fast response times for MWIR beam steering using a transmission-type optical phased array, we develop a low-loss polymer-network liquid crystal and characterize its electro-optical properties.
Respiratory Monitoring by Ultrafast Humidity Sensors with Nanomaterials: A Review
Respiratory monitoring is a fundamental method to understand the physiological and psychological relationships between respiration and the human body. In this review, we overview recent developments on ultrafast humidity sensors with functional nanomaterials for monitoring human respiration. Key advances in design and materials have resulted in humidity sensors with response and recovery times reaching 8 ms. In addition, these sensors are particularly beneficial for respiratory monitoring by being portable and noninvasive. We systematically classify the reported sensors according to four types of output signals: impedance, light, frequency, and voltage. Design strategies for preparing ultrafast humidity sensors using nanomaterials are discussed with regard to physical parameters such as the nanomaterial film thickness, porosity, and hydrophilicity. We also summarize other applications that require ultrafast humidity sensors for physiological studies. This review provides key guidelines and directions for preparing and applying such sensors in practical applications.
A Sprayed Graphene Pattern-Based Flexible Strain Sensor with High Sensitivity and Fast Response
Flexible strain sensors have a wide range of applications in biomedical science, aerospace industry, portable devices, precise manufacturing, etc. However, the manufacturing processes of most flexible strain sensors previously reported have usually required high manufacturing costs and harsh experimental conditions. Besides, research interests are often focused on improving a single attribute parameter while ignoring others. This work aims to propose a simple method of manufacturing flexible graphene-based strain sensors with high sensitivity and fast response. Firstly, oxygen plasma treats the substrate to improve the interfacial interaction between graphene and the substrate, thereby improving device performance. The graphene solution is then sprayed using a soft PET mask to define a pattern for making the sensitive layer. This flexible strain sensor exhibits high sensitivity (gauge factor ~100 at 1% strain), fast response (response time: 400–700 μs), good stability (1000 cycles), and low overshoot (<5%) as well. Those processes used are compatible with a variety of complexly curved substrates and is expected to broaden the application of flexible strain sensors.
Utilizing the Transverse Thermoelectric Effect of Thin Films for Pulse Laser Detection
In this work, pulse laser detectors based on the transverse thermoelectric effect of YBa2Cu3O7-δ thin films on vicinal cut LaAlO3 (001) substrates have been fabricated. The anisotropic Seebeck coefficients between ab-plane (Sab) and c-axis (Sc) of thin films are utilized to generate the output voltage signal in such kind of detectors. Fast response has been determined in these sensors, including both the rise time and the decay time. Under the irradiation of pulse laser with the pulse duration of 5–7 ns, the output voltage of these detectors shows the rise time and the decay time of 6 and 42 ns, respectively, which are much smaller than those from other materials. The small rise time in YBa2Cu3O7-δ-based detectors may be due to its low resistivity. While the high thermal conductivity and the large contribution of electronic thermal conductivity to the thermal conductivity of YBa2Cu3O7-δ are thought to be responsible for the small decay time. In addition, these detectors show good response under the irradiation of pulse lasers with a repetition rate of 4 kHz, including the precise determinations of amplitude and time. These results may pave a simple and convenient approach to manufacture the pulse laser detectors with a fast response.