Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,141
result(s) for
"feature fusion"
Sort by:
Remote Sensing Imagery Super Resolution Based on Adaptive Multi-Scale Feature Fusion Network
by
Wu, Yingdan
,
Wang, Xinying
,
Ming, Yang
in
adaptive multi-scale feature fusion
,
remote sensing imagery
,
super-resolution
2020
Due to increasingly complex factors of image degradation, inferring high-frequency details of remote sensing imagery is more difficult compared to ordinary digital photos. This paper proposes an adaptive multi-scale feature fusion network (AMFFN) for remote sensing image super-resolution. Firstly, the features are extracted from the original low-resolution image. Then several adaptive multi-scale feature extraction (AMFE) modules, the squeeze-and-excited and adaptive gating mechanisms are adopted for feature extraction and fusion. Finally, the sub-pixel convolution method is used to reconstruct the high-resolution image. Experiments are performed on three datasets, the key characteristics, such as the number of AMFEs and the gating connection way are studied, and super-resolution of remote sensing imagery of different scale factors are qualitatively and quantitatively analyzed. The results show that our method outperforms the classic methods, such as Super-Resolution Convolutional Neural Network(SRCNN), Efficient Sub-Pixel Convolutional Network (ESPCN), and multi-scale residual CNN(MSRN).
Journal Article
Multi-deep features fusion for high-resolution remote sensing image scene classification
by
Yuan, Baohua
,
Han, Lixin
,
Gu, Xiangping
in
Artificial Intelligence
,
Artificial neural networks
,
Categories
2021
In view of the small number of categories and the relatively little amount of labeled data, it is challenging to apply the fusion of deep convolution features directly to remote sensing images. To address this issue, we propose a pyramid multi-subset feature fusion method, which can effectively fuse the deep features extracted from different pre-trained convolutional neural networks and integrate the global and local information of the deep features, thereby obtaining stronger discriminative and low-dimensional features. By introducing the idea of weighting the difference between different categories, the weight discriminant correlation analysis method is designed to make it pay more attention to those categories that are not easy to distinguish. In order to mine global and local feature information, the pyramid method is employed to divide feature fusion into several layers. Each layer divides the features into several subsets and then performs feature fusion on the corresponding feature subsets, and the number of subsets from top to bottom gradually increases. Feature fusion at the top of the pyramid obtains a global representation, while feature fusion at the bottom obtains a local detail representation. Our experiment results on three public remote sensing image data sets demonstrate that the proposed multi-deep features fusion method produces improvements over other state-of-the-art deep learning methods.
Journal Article
Prediction of Pedestrian Crossing Behavior Based on Surveillance Video
by
Mou, Xingang
,
Ren, Hongyu
,
He, Yi
in
Accidents, Traffic - prevention & control
,
Automobile Driving
,
autonomous driving
2022
Prediction of pedestrian crossing behavior is an important issue faced by the realization of autonomous driving. The current research on pedestrian crossing behavior prediction is mainly based on vehicle camera. However, the sight line of vehicle camera may be blocked by other vehicles or the road environment, making it difficult to obtain key information in the scene. Pedestrian crossing behavior prediction based on surveillance video can be used in key road sections or accident-prone areas to provide supplementary information for vehicle decision-making, thereby reducing the risk of accidents. To this end, we propose a pedestrian crossing behavior prediction network for surveillance video. The network integrates pedestrian posture, local context and global context features through a new cross-stacked gated recurrence unit (GRU) structure to achieve accurate prediction of pedestrian crossing behavior. Applied onto the surveillance video dataset from the University of California, Berkeley to predict the pedestrian crossing behavior, our model achieves the best results regarding accuracy, F1 parameter, etc. In addition, we conducted experiments to study the effects of time to prediction and pedestrian speed on the prediction accuracy. This paper proves the feasibility of pedestrian crossing behavior prediction based on surveillance video. It provides a reference for the application of edge computing in the safety guarantee of automatic driving.
Journal Article
Precise Crop Classification of Hyperspectral Images Using Multi-Branch Feature Fusion and Dilation-Based MLP
by
Zhou, Huaming
,
Wang, Aili
,
Iwahori, Yuji
in
Accuracy
,
Artificial neural networks
,
Classification
2022
The precise classification of crop types using hyperspectral remote sensing imaging is an essential application in the field of agriculture, and is of significance for crop yield estimation and growth monitoring. Among the deep learning methods, Convolutional Neural Networks (CNNs) are the premier model for hyperspectral image (HSI) classification for their outstanding locally contextual modeling capability, which facilitates spatial and spectral feature extraction. Nevertheless, the existing CNNs have a fixed shape and are limited to observing restricted receptive fields, constituting a simulation difficulty for modeling long-range dependencies. To tackle this challenge, this paper proposed two novel classification frameworks which are both built from multilayer perceptrons (MLPs). Firstly, we put forward a dilation-based MLP (DMLP) model, in which the dilated convolutional layer replaced the ordinary convolution of MLP, enlarging the receptive field without losing resolution and keeping the relative spatial position of pixels unchanged. Secondly, the paper proposes multi-branch residual blocks and DMLP concerning performance feature fusion after principal component analysis (PCA), called DMLPFFN, which makes full use of the multi-level feature information of the HSI. The proposed approaches are carried out on two widely used hyperspectral datasets: Salinas and KSC; and two practical crop hyperspectral datasets: WHU-Hi-LongKou and WHU-Hi-HanChuan. Experimental results show that the proposed methods outshine several state-of-the-art methods, outperforming CNN by 6.81%, 12.45%, 4.38% and 8.84%, and outperforming ResNet by 4.48%, 7.74%, 3.53% and 6.39% on the Salinas, KSC, WHU-Hi-LongKou and WHU-Hi-HanChuan datasets, respectively. As a result of this study, it was confirmed that the proposed methods offer remarkable performances for hyperspectral precise crop classification.
Journal Article
An experimental study on the identification of the root bolts' state of wind turbine blades using blade sensors
2024
Bolt looseness may occur on wind turbine (WT) blades exposed to operational and environmental variability conditions, which sometimes can cause catastrophic consequences. Therefore, it is necessary to monitor the loosening state of WT blade root bolts. In order to solve this problem, this paper proposes a method to monitor the looseness of blade root bolts using the sensors installed on the WT blade. An experimental platform was first built by installing acceleration and strain sensors for monitoring bolt looseness. Through the physical experiment of blade root bolts' looseness, the response data of blade sensors is then obtained under different bolt looseness numbers and degrees. Afterwards, the sensor signal of the blade root bolts is analyzed in time domain, frequency domain, and time‐frequency domain, and the sensitivity features of various signals are extracted. So the eigenvalue category as the input of the state discrimination model was determined. The LightGBM (light gradient boosting machine) classification algorithm was applied to identify different bolt looseness states for the multi‐domain features. The impact of different combinations of sensor categories and quantities as the data source on the identification results is discussed, and a reference for the selection of sensors is provided. The proposed method can discriminate four bolt states at an accuracy of around 99.8% using 5‐fold cross‐validation.
Journal Article
Spatiotemporal Feature Fusion Transformer for Precipitation Nowcasting via Feature Crossing
2024
Precipitation nowcasting plays an important role in mitigating the damage caused by severe weather. The objective of precipitation nowcasting is to forecast the weather conditions 0–2 h ahead. Traditional models based on numerical weather prediction and radar echo extrapolation obtain relatively better results. In recent years, models based on deep learning have also been applied to precipitation nowcasting and have shown improvement. However, the forecast accuracy is decreased with longer forecast times and higher intensities. To mitigate the shortcomings of existing models for precipitation nowcasting, we propose a novel model that fuses spatiotemporal features for precipitation nowcasting. The proposed model uses an encoder–forecaster framework that is similar to U-Net. First, in the encoder, we propose a spatial and temporal multi-head squared attention module based on MaxPool and AveragePool to capture every independent sequence feature, as well as a global spatial and temporal feedforward network, to learn the global and long-distance relationships between whole spatiotemporal sequences. Second, we propose a cross-feature fusion strategy to enhance the interactions between features. This strategy is applied to the components of the forecaster. Based on the cross-feature fusion strategy, we constructed a novel multi-head squared cross-feature fusion attention module and cross-feature fusion feedforward network in the forecaster. Comprehensive experimental results demonstrated that the proposed model more effectively forecasted high-intensity levels than other models. These results prove the effectiveness of the proposed model in terms of predicting convective weather. This indicates that our proposed model provides a feasible solution for precipitation nowcasting. Extensive experiments also proved the effectiveness of the components of the proposed model.
Journal Article
Fault Diagnosis for Rolling Bearings Based on Multiscale Feature Fusion Deep Residual Networks
2023
Deep learning, due to its excellent feature-adaptive capture ability, has been widely utilized in the fault diagnosis field. However, there are two common problems in deep-learning-based fault diagnosis methods: (1) many researchers attempt to deepen the layers of deep learning models for higher diagnostic accuracy, but degradation problems of deep learning models often occur; and (2) the use of multiscale features can easily be ignored, which makes the extracted data features lack diversity. To deal with these problems, a novel multiscale feature fusion deep residual network is proposed in this paper for the fault diagnosis of rolling bearings, one which contains multiple multiscale feature fusion blocks and a multiscale pooling layer. The multiple multiscale feature fusion block is designed to automatically extract the multiscale features from raw signals, and further compress them for higher dimensional feature mapping. The multiscale pooling layer is constructed to fuse the extracted multiscale feature mapping. Two famous rolling bearing datasets are adopted to evaluate the diagnostic performance of the proposed model. The comparison results show that the diagnostic performance of the proposed model is superior to not only several popular models, but also other advanced methods in the literature.
Journal Article
Improving multispectral pedestrian detection with scale‐aware permutation attention and adjacent feature aggregation
by
Shen, Jifeng
,
Wang, Zhi
,
Zuo, Xin
in
Accuracy
,
adjacent‐branch feature aggregation
,
Attention
2023
High quality feature fusion module is one of the key components for multispectral pedestrian detection system in challenging situations, such as large‐scale variance and occlusion. Although attention mechanism is one of the most effective ways for feature refining, the correlation between attention and scales in feature pyramid still remains unknown. Therefore, a scale‐aware permutated attention module is proposed to enhance features of objects with different scales adaptively in the feature pyramid. Specifically, four different local and global attention sub‐modules are investigated to refine feature maps with different permutations in the Feature Pyramid Networks, improving the quality of the feature fusion. Besides, to address the high miss‐rate issue for small‐sized pedestrians, an adjacent‐branch feature aggregation module is proposed to aggregate features across different scales, taking both semantic context and spatial resolution into consideration. Both modules can benefit from each other with significant performance improvement in terms of efficiency and accuracy, when equipped with the dual‐branch CenterNet detection framework. Experiments on the KAIST and FLIR datasets demonstrate its superior performance compared with other state‐of‐the‐arts.
Journal Article
Hyperspectral Image Spectral–Spatial Classification Method Based on Deep Adaptive Feature Fusion
by
Mu, Caihong
,
Liu, Yijin
,
Liu, Yi
in
adaptive feature fusion
,
data collection
,
hyperspectral image classification
2021
Convolutional neural networks (CNNs) have been widely used in hyperspectral image (HSI) classification. Many algorithms focus on the deep extraction of a single kind of feature to improve classification. There have been few studies on the deep extraction of two or more kinds of fusion features and the combination of spatial and spectral features for classification. The authors of this paper propose an HSI spectral–spatial classification method based on deep adaptive feature fusion (SSDF). This method first implements the deep adaptive fusion of two hyperspectral features, and then it performs spectral–spatial classification on the fused features. In SSDF, a U-shaped deep network model with the principal component features as the model input and the edge features as the model label is designed to adaptively fuse two kinds of different features. One comprises the edge features of the HSIs extracted by the guided filter, and the other comprises the principal component features obtained by dimensionality reduction of HSIs using principal component analysis. The fused new features are input into a multi-scale and multi-level feature extraction model for further extraction of deep features, which are then combined with the spectral features extracted by the long short-term memory (LSTM) model for classification. The experimental results on three datasets demonstrated that the performance of the proposed SSDF was superior to several state-of-the-art methods. Additionally, SSDF was found to be able to perform best as the number of training samples decreased sharply, and it could also obtain a high classification accuracy for categories with few samples.
Journal Article
Attention augmented multi-scale network for single image super-resolution
by
Xiong Chengyi
,
Wang, Ge
,
Shi Xiaodi
in
Artificial neural networks
,
Convolution
,
Image resolution
2021
Multi-scale convolution can be used in a deep neural network (DNN) to obtain a set of features in parallel with different perceptive fields, which is beneficial to reduce network depth and lower training difficulty. Also, the attention mechanism has great advantages to strengthen representation power of a DNN. In this paper, we propose an attention augmented multi-scale network (AAMN) for single image super-resolution (SISR), in which deep features from different scales are discriminatively aggregated to improve performance. Specifically, the statistics of features at different scales are first computed by global average pooling operation, and then used as a guidance to learn the optimal weight allocation for the subsequent feature recalibration and aggregation. Meanwhile, we adopt feature fusion at two levels to further boost reconstruction power, one of which is intra-group local hierarchical feature fusion (LHFF), and the other is inter-group global hierarchical feature fusion (GHFF). Extensive experiments on public standard datasets indicate the superiority of our AAMN over the state-of-the-art models, in terms of not only quantitative and qualitative evaluation but also model complexity and efficiency.
Journal Article