Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
11
result(s) for
"feedforward neural network (FNN)"
Sort by:
Machine Learning for Human Motion Intention Detection
by
Hsu, Che-Kang
,
Hsu, Wei-Li
,
Wang, Fu-Cheng
in
Calibration
,
Data collection
,
feedforward neural network (FNN)
2023
The gait pattern of exoskeleton control conflicting with the human operator’s (the pilot) intention may cause awkward maneuvering or even injury. Therefore, it has been the focus of many studies to help decide the proper gait operation. However, the timing for the recognization plays a crucial role in the operation. The delayed detection of the pilot’s intent can be equally undesirable to the exoskeleton operation. Instead of recognizing the motion, this study examines the possibility of identifying the transition between gaits to achieve in-time detection. This study used the data from IMU sensors for future mobile applications. Furthermore, we tested using two machine learning networks: a linearfFeedforward neural network and a long short-term memory network. The gait data are from five subjects for training and testing. The study results show that: 1. The network can successfully separate the transition period from the motion periods. 2. The detection of gait change from walking to sitting can be as fast as 0.17 s, which is adequate for future control applications. However, detecting the transition from standing to walking can take as long as 1.2 s. 3. This study also find that the network trained for one person can also detect movement changes for different persons without deteriorating the performance.
Journal Article
Predicting Crash Injury Severity with Machine Learning Algorithm Synergized with Clustering Technique: A Promising Protocol
2020
Predicting crash injury severity is a crucial constituent of reducing the consequences of traffic crashes. This study developed machine learning (ML) models to predict crash injury severity using 15 crash-related parameters. Separate ML models for each cluster were obtained using fuzzy c-means, which enhanced the predicting capability. Finally, four ML models were developed: feed-forward neural networks (FNN), support vector machine (SVM), fuzzy C-means clustering based feed-forward neural network (FNN-FCM), and fuzzy c-means based support vector machine (SVM-FCM). Features that were easily identified with little investigation on crash sites were used as an input so that the trauma center can predict the crash severity level based on the initial information provided from the crash site and prepare accordingly for the treatment of the victims. The input parameters mainly include vehicle attributes and road condition attributes. This study used the crash database of Great Britain for the years 2011–2016. A random sample of crashes representing each year was used considering the same share of severe and non-severe crashes. The models were compared based on injury severity prediction accuracy, sensitivity, precision, and harmonic mean of sensitivity and precision (i.e., F1 score). The SVM-FCM model outperformed the other developed models in terms of accuracy and F1 score in predicting the injury severity level of severe and non-severe crashes. This study concluded that the FCM clustering algorithm enhanced the prediction power of FNN and SVM models.
Journal Article
Efficient sampling-based inverse reliability analysis combining Monte Carlo simulation (MCS) and feedforward neural network (FNN)
2022
Inverse reliability analysis evaluates a percentile value of a performance function when the target reliability is given. In cases of high dimensional or highly nonlinear performance functions, sampling-based methods such as Monte Carlo simulation (MCS), Latin hypercube sampling, and importance sampling are considered to be better candidates for reliability analysis. The sampling-based methods are very accurate but require a large number of samples, which can be very time-consuming. Therefore, this paper proposes an efficient and/or accurate sampling-based reliability analysis method without using a surrogate model. The proposed method helps to improve the accuracy of reliability analysis with the same number of samples or to ensure the same accuracy of reliability analysis with fewer samples. This study starts with an idea of training relationship between limited samples constituting realization of the performance distribution—usually between 10 and 100—and its corresponding true percentile value where the performance distribution is defined as a one-dimensional distribution resulted from a performance function and its random variables. To this end, feedforward neural network (FNN), which is one of promising artificial neural network (ANN) models that approximate high dimensional models using layered structures, is introduced in this study, and limited samples constituting realizations of various performance distributions and their corresponding true percentile values are used as input and target data, respectively. Various beta distributions are used to create the training data sets. A FNN training method using kernel density estimation and equidistant points to represent the kernel distribution data is also proposed to remove dimensionality of the training inputs. Comparative study shows that the proposed method training FNN with samples constituting realization of the performance distribution (Method 2) is more accurate than a method that directly estimates the percentile value from the kernel distribution fitting the samples constituting realization generated through MCS (Method 1). In addition, compared to Method 2, another proposed method that trains FNN with the kernel density estimation and equidistant points (Method 3) is more accurate in reliability analysis and more computationally efficient in FNN training. Method 3 is also applicable to high reliability problems, and it is more accurate than Kriging-based method for high dimensional problems.
Journal Article
Deep Learning-Based Prediction Model for the Cobb Angle in Adolescent Idiopathic Scoliosis Patients
by
Fung, Chun-Hai (Ericsson)
,
He, Zhong
,
Mak, Ka-Kwan (Kyle)
in
adolescent idiopathic scoliosis (AIS)
,
Algorithms
,
Automation
2024
Scoliosis, characterized by spine deformity, is most common in adolescent idiopathic scoliosis (AIS). Manual Cobb angle measurement limitations underscore the need for automated tools. This study employed a vertebral landmark extraction method and Feedforward Neural Network (FNN) to predict scoliosis progression in 79 AIS patients. The novel intervertebral angles matrix format showcased results. The mean absolute error for the intervertebral angle progression was 1.5 degrees, while the Pearson correlation of the predicted Cobb angles was 0.86. The accuracy in classifying Cobb angles (<15°, 15–25°, 25–35°, 35–45°, >45°) was 0.85, with 0.65 sensitivity and 0.91 specificity. The FNN demonstrated superior accuracy, sensitivity, and specificity, aiding in tailored treatments for potential scoliosis progression. Addressing FNNs’ over-fitting issue through strategies like “dropout” or regularization could further enhance their performance. This study presents a promising step towards automated scoliosis diagnosis and prognosis.
Journal Article
Machine Learning-Aided Supply Chain Analysis of Waste Management Systems: System Optimization for Sustainable Production
by
Chattopadhyay, Amit K
,
Ng, Zhe Wee
,
Debnath, Biswajit
in
Analysis
,
Artificial intelligence
,
Circular economy
2025
Electronic-waste (e-waste) management is a key challenge in engineering smart cities due to its rapid accumulation, complex composition, sparse data availability, and significant environmental and economic impacts. This study employs a bespoke machine learning infrastructure on an Indian e-waste supply chain network (SCN) focusing on the three pillars of sustainability—environmental, economic, and social. The economic resilience of the SCN is investigated against external perturbations, like market fluctuations or policy changes, by analyzing six stochastically perturbed modules, generated from the optimal point of the original dataset using Monte Carlo Simulation (MCS). In the process, MCS is demonstrated as a powerful technique to deal with sparse statistics in SCN modeling. The perturbed model is then analyzed to uncover “hidden” non-linear relationships between key variables and their sensitivity in dictating economic arbitrage. Two complementary ensemble-based approaches have been used—Feedforward Neural Network (FNN) model and Random Forest (RF) model. While FNN excels in regressing the model performance against the industry-specified target, RF is better in dealing with feature engineering and dimensional reduction, thus identifying the most influential variables. Our results demonstrate that the FNN model is a superior predictor of arbitrage conditions compared to the RF model. The tangible deliverable is a data-driven toolkit for smart engineering solutions to ensure sustainable e-waste management.
Journal Article
A hybrid constriction coefficient-based particle swarm optimization and gravitational search algorithm for training multi-layer perceptron
2020
PurposeIn this paper, a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm (CPSOGSA) has been employed for training MLP to overcome sensitivity to initialization, premature convergence, and stagnation in local optima problems of MLP.Design/methodology/approachIn this study, the exploration of the search space is carried out by gravitational search algorithm (GSA) and optimization of candidate solutions, i.e. exploitation is performed by particle swarm optimization (PSO). For training the multi-layer perceptron (MLP), CPSOGSA uses sigmoid fitness function for finding the proper combination of connection weights and neural biases to minimize the error. Secondly, a matrix encoding strategy is utilized for providing one to one correspondence between weights and biases of MLP and agents of CPSOGSA.FindingsThe experimental findings convey that CPSOGSA is a better MLP trainer as compared to other stochastic algorithms because it provides superior results in terms of resolving stagnation in local optima and convergence speed problems. Besides, it gives the best results for breast cancer, heart, sine function and sigmoid function datasets as compared to other participating algorithms. Moreover, CPSOGSA also provides very competitive results for other datasets.Originality/valueThe CPSOGSA performed effectively in overcoming stagnation in local optima problem and increasing the overall convergence speed of MLP. Basically, CPSOGSA is a hybrid optimization algorithm which has powerful characteristics of global exploration capability and high local exploitation power. In the research literature, a little work is available where CPSO and GSA have been utilized for training MLP. The only related research paper was given by Mirjalili et al., in 2012. They have used standard PSO and GSA for training simple FNNs. However, the work employed only three datasets and used the MSE performance metric for evaluating the efficiency of the algorithms. In this paper, eight different standard datasets and five performance metrics have been utilized for investigating the efficiency of CPSOGSA in training MLPs. In addition, a non-parametric pair-wise statistical test namely the Wilcoxon rank-sum test has been carried out at a 5% significance level to statistically validate the simulation results. Besides, eight state-of-the-art meta-heuristic algorithms were employed for comparative analysis of the experimental results to further raise the authenticity of the experimental setup.
Journal Article
Implementing Method of Empirical Mode Decomposition based on Artificial Neural Networks and Genetic Algorithms for Crude Oil Price Forecasting
2020
Fluctuations in crude oil prices can affect a country's economic policies. The movement of crude oil prices tends to be nonlinear and non-stationary. One forecasting method that is intended to accommodate these traits is forecasting that integrates empirical mode decomposition (EEMD) ensemble methods based on artificial neural networks and genetic algorithms. In the EEMD method, a white noise signal is added to compensate for the mixture mode that can be formed. Each IMF and residue generated in the decomposition process are used as input to a feedforward neural network (FNN) artificial neural network to obtain forecasting models from each IMF and residue. The genetic algorithm is integrated with the FNN to avoid overfitting, the formation of local optima solutions, and the sensitivity of the selection of FNN parameters. The data in this study uses West Texas Intermediate (WTI) and Brent oil prices. The results of the performance comparison trials for several combination forecasting methods can be concluded that the forecasting results that integrate the EEMD method with JST-GA provide better results compared to the forecasting method that integrates EMD with ANN and EEMD with ANN. The forecasting method developed in this study resulted in forecasting with RMSE / Dstat values of 0.0257 / 61.5936% and 0.0270 / 72.0930% respectively for daily and monthly data from WTI oil types; and the RMSE / Dstat value of 0.0229 / 58.8128% and 0.0300 / 81.5789% respectively for daily and monthly data from the type of Brent oil.
Journal Article
Engineering Supply Chain Transportation Indexes through Big Data Analytics and Deep Learning
by
Giannakopoulos, Nikolaos T.
,
Terzi, Marina C.
,
Sakas, Damianos P.
in
Artificial intelligence
,
Big Data
,
Competitive advantage
2023
Deep learning has experienced an increased demand for its capabilities to categorize and optimize operations and provide higher-accuracy information. For this purpose, the implication of deep learning procedures has been described as a vital tool for the optimization of supply chain firms’ transportation operations, among others. Concerning the indexes of transportation operations of supply chain firms, it has been found that the contribution of big data analytics could be crucial to their optimization. Due to big data analytics’ variety and availability, supply chain firms should investigate their impact on their key transportation indexes in their effort to comprehend the variation of the referred indexes. The authors proceeded with the gathering of the required big data analytics from the most established supply chain firms’ websites, based on their (ROPA), revenue growth, and inventory turn values, and performed correlation and linear regression analyses to extract valuable insights for the next stages of the research. Then, these insights, in the form of statistical coefficients, were inserted into the development of a Hybrid Model (Agent-Based and System Dynamics modeling), with the application of the feedforward neural network (FNN) method for the estimation of specific agents’ behavioral analytical metrics, to produce accurate simulations of the selected key performance transportation indexes of supply chain firms. An increase in the number of website visitors to supply chain firms leads to a 60% enhancement of their key transportation performance indexes, mostly related to transportation expenditure. Moreover, it has been found that increased supply chain firms’ website visibility tends to decrease all of the selected transportation performance indexes (TPIs) by an average amount of 87.7%. The implications of the research outcomes highlight the role of increased website visibility and search engine ranking as a cost-efficient means for reducing specific transportation costs (Freight Expenditure, Inferred Rates, and Truckload Line Haul), thus achieving enhanced operational efficiency and transportation capacity.
Journal Article
Human Posture Transition-Time Detection Based upon Inertial Measurement Unit and Long Short-Term Memory Neural Networks
by
Wang, Fu-Cheng
,
Kuo, Chun-Ting
,
Yen, Jia-Yush
in
Accuracy
,
Algorithms
,
Artificial intelligence
2023
As human–robot interaction becomes more prevalent in industrial and clinical settings, detecting changes in human posture has become increasingly crucial. While recognizing human actions has been extensively studied, the transition between different postures or movements has been largely overlooked. This study explores using two deep-learning methods, the linear Feedforward Neural Network (FNN) and Long Short-Term Memory (LSTM), to detect changes in human posture among three different movements: standing, walking, and sitting. To explore the possibility of rapid posture-change detection upon human intention, the authors introduced transition stages as distinct features for the identification. During the experiment, the subject wore an inertial measurement unit (IMU) on their right leg to measure joint parameters. The measurement data were used to train the two machine learning networks, and their performances were tested. This study also examined the effect of the sampling rates on the LSTM network. The results indicate that both methods achieved high detection accuracies. Still, the LSTM model outperformed the FNN in terms of speed and accuracy, achieving 91% and 95% accuracy for data sampled at 25 Hz and 100 Hz, respectively. Additionally, the network trained for one test subject was able to detect posture changes in other subjects, demonstrating the feasibility of personalized or generalized deep learning models for detecting human intentions. The accuracies for posture transition time and identification at a sampling rate of 100 Hz were 0.17 s and 94.44%, respectively. In summary, this study achieved some good outcomes and laid a crucial foundation for the engineering application of digital twins, exoskeletons, and human intention control.
Journal Article
Political Optimizer Based Feedforward Neural Network for Classification and Function Approximation
2021
Political optimizer (PO) is a recently proposed human-behavior inspired meta-heuristic, which has shown tremendous performance on complex multimodal functions as well as engineering optimization problems. Good convergence speed and well-balanced exploratory and exploitative behavior of PO convince us to employ PO for the training of feedforward neural network (FNN). The FNN-training problem is formulated as an optimization problem in which the objective is to minimize the mean squared error (MSE) or cross entropy (CE). The weights and biases of the FNN are arranged in the form of a vector called a candidate solution. The performance of the proposed trainer is evaluated on 5 classification data-sets and 5 function-approximation data-sets, which have already been used in the literature. In recent years, grey wolf optimizer, moth flame optimization, multi-verse optimizer, sine-cosine algorithm, whale optimization algorithm, ant lion optimizer, and Salp swarm algorithm have successfully been applied on neural network training. In this paper, we compare the performance of PO with these algorithms and show that PO either outperforms them or performs equivalently. The MSE, CE, training set accuracy, and test set accuracy are used as metrics for the comparative analysis. The non-parametric Wilcoxon’s rank-sum test is used to show the statistical significance of the results. Based on the tremendous performance, we highly recommend using PO for the training of artificial neural networks to solve the classification and regression problems.
Journal Article