Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
351
result(s) for
"fermented extract"
Sort by:
Antidiabetic Effect of Noodles Containing Fermented Lettuce Extracts
by
Yu Eun Cheong
,
Soon Yeon Jeong
,
Byeongjun Ji
in
Amino acids
,
antidiabetic effect
,
antidiabetic effect; fermented lettuce extract; GC–TOF-MS; metabolomics; noodles
2021
The aim of the current study was to examine the antidiabetic effect of noodle containing fermented lettuce extract (FLE) on diabetic mice as a pre-clinical study. The γ-aminobutyric acid (GABA) content, antioxidant capacity, and total polyphenol content of the FLE noodles were analyzed and compared with those of standard noodles. In addition, oral glucose and sucrose tolerance, and fasting blood glucose tests were performed using a high-fat diet/streptozotocin-mediated diabetic mouse model. Serum metabolite profiling of mice feed standard or FLE noodles was performed using gas chromatography–time-of-flight mass spectrometry (GC–TOF-MS) to understand the mechanism changes induced by the FLE noodles. The GABA content, total polyphenols, and antioxidant activity were high in FLE noodles compared with those in the standard noodles. In vivo experiments also showed that mice fed FLE noodles had lower blood glucose levels and insulin resistance than those fed standard noodles. Moreover, glycolysis, purine metabolism, and amino acid metabolism were altered by FLE as determined by GC–TOF-MS-based metabolomics. These results demonstrate that FLE noodles possess significant antidiabetic activity, suggesting the applicability of fermented lettuce extract as a potential food additive for diabetic food products.
Journal Article
Fermentation Extract of Naringenin Increases the Expression of Estrogenic Receptor β and Modulates Genes Related to the p53 Signalling Pathway, miR-200c and miR-141 in Human Colon Cancer Cells Exposed to BPA
by
Lozano-Herrera, Sara Julietta
,
Hernández-Puga, Ana Gabriela
,
Solís-Sáinz, Juan Carlos
in
Acids
,
Analysis
,
Antioxidants
2022
The estrogenic receptor beta (ERβ) protects against carcinogenesis by stimulating apoptosis. Bisphenol A (BPA) is related to promoting cancer, and naringenin has chemoprotective activities both can bind to ERβ. Naringenin in the colon is metabolized by the microbiota. Cancer involves genetic and epigenetic mechanisms, including miRNAs. The objective of the present study was to evaluate the co-exposure effect of colonic in vitro fermented extract of naringenin (FEN) and BPA, to elucidate molecular effects in HT-29 colon cancer cell line. For this, we quantified genes related to the p53 signaling pathway as well as ERβ, miR-200c, and miR-141. As an important result, naringenin (IC50 250 µM) and FEN (IC50 37%) promoted intrinsic pathways of apoptosis through phosphatase and tensin homolog (PTEN) (+2.70, +1.72-fold, respectively) and CASP9 (+3.99, +2.03-fold, respectively) expression. BPA decreased the expression of PTEN (−3.46-fold) gene regulated by miR-200. We suggest that once co-exposed, cells undergo a greater stress forcing them to mediate other extrinsic apoptosis mechanisms associated with death domain FASL. In turn, these findings are related to the increase of ERβ (5.3-fold with naringenin and 13.67-fold with FEN) gene expression, important in the inhibition of carcinogenic development.
Journal Article
Quercetin and Its Fermented Extract as a Potential Inhibitor of Bisphenol A-Exposed HT-29 Colon Cancer Cells’ Viability
by
Lozano-Herrera, Sara Julietta
,
García-Gutiérrez, Nataly
,
Luna-Bárcenas, Gabriel
in
3,4-Dihydroxyphenylacetic Acid - pharmacology
,
Analysis
,
Antioxidants
2023
Bisphenol A (BPA) promotes colon cancer by altering the physiological functions of hormones. Quercetin (Q) can regulate signaling pathways through hormone receptors, inhibiting cancer cells. The antiproliferative effects of Q and its fermented extract (FEQ, obtained by Q gastrointestinal digestion and in vitro colonic fermentation) were analyzed in HT-29 cells exposed to BPA. Polyphenols were quantified in FEQ by HPLC and their antioxidant capacity by DPPH and ORAC. Q and 3,4-dihydroxyphenylacetic acid (DOPAC) were quantified in FEQ. Q and FEQ exhibited antioxidant capacity. Cell viability with Q+BPA and FEQ+BPA was 60% and 50%, respectively; less than 20% of dead cells were associated with the necrosis process (LDH). Treatments with Q and Q+BPA induced cell cycle arrest in the G0/G1 phase, and FEQ and FEQ+BPA in the S phase. Compared with other treatments, Q positively modulated ESR2 and GPR30 genes. Using a gene microarray of the p53 pathway, Q, Q+BPA, FEQ and FEQ+BPA positively modulated genes involved in apoptosis and cell cycle arrest; bisphenol inhibited the expression of pro-apoptotic and cell cycle repressor genes. In silico analyses demonstrated the binding affinity of Q > BPA > DOPAC molecules for ERα and ERβ. Further studies are needed to understand the role of disruptors in colon cancer.
Journal Article
Immunomodulatory Effect of Flammulina rossica Fermentation Extract on Healthy and Immunosuppressed Mice
2023
Flammulina rossica fermentation extract (FREP) was obtained by ethanol precipitation of the fermentation broth. The molecular weight of FREP is 28.52 kDa, and it mainly contains active ingredients such as polysaccharides, proteins, reducing sugars, and 16 amino acids. Among them, the polysaccharides were mannose, glucose, galactose, arabinose, and fucose and possessed β-glycosidic bonds. Furthermore, the immunoregulatory activities of FREP were investigated in vivo. The results demonstrated that FREP could increase the counts of CD4+ T lymphocytes and the ratio of CD4+/CD8+ in a dose-dependent manner in healthy mice. In addition, FREP significantly increased serum cytokines, including IL-2, IL-8, IL-10, IL-12, IL-6, IL-1β, INF-γ, C-rection protein, and TNF-α, and promoted splenocyte proliferation in healthy mice. Finally, FREP could restore the counts of white blood cells, red blood cells, secretory immunoglobulin A, and antibody-forming cells and significantly promote the serum haemolysin level in mice treated with cyclophosphamide. The findings indicated that FREP possessed immunoregulatory activity in healthy mice and could improve the immune functions in immunosuppressive mice. Therefore, FREP could be exploited as an immunomodulatory agent and potential immunotherapeutic medicine for patients with inadequate immune function.
Journal Article
Protective effects of a triple‐fermented barley extract (FBe) against HCl/EtOH‐induced gastric mucosa damage in mice
by
Cho, Hyung‐Rae
,
Park, Dong‐Chan
,
Bashir, Khawaja Muhammad Imran
in
gastroprotective effects
,
HCl/EtOH‐induced gastric ulcer
,
mice
2018
This study was designed to observe the possible protective effects of a triple‐fermented barley (Hordeum vulgare L.) extract (FBe) obtained by saccharification and using Saccharomyces cerevisiae and Weissella cibaria in alleviating gastric damage induced by a hydrochloric acid (HCl) and ethanol (EtOH) mixture in mice. After oral administration of FBe (300, 200, and 100 mg/kg) followed by 1 hr before and after the single treatment of HCl/EtOH (H/E) mixture, the hemorrhagic lesion scores, histopathology of the stomach, gastric nitrate/nitrite content, lipid peroxidation, and antioxidant defense systems including catalase and superoxide dismutase activities were observed. Following a single oral treatment of H/E‐induced gastric damages as measured by hemorrhagic gross lesions and histopathological gastric, ulcerative lesions were significantly and dose‐dependently (p < 0.01 or p < 0.05) inhibited in mice, when all three different doses of FBe were administered as compared to those in H/E control mice. In particular, FBe also increased gastric nitrate/nitrite content and strengthened the antioxidant defense, with a decrease in the level of gastric lipid peroxidation, but increased the activities of CAT and SOD. Moreover, the effects of FBe are comparable to that of ranitidine, a reference drug. The obtained results suggest that this fermented barley extract prevented mice from H/E‐induced gastric mucosal damages through the suppression of inflammatory responses and oxidative stress‐responsive free radicals. Thus, FBe can be useful to treat patients suffering from gastric mucosal disorders as a potent food supplement, and thereby, it would increase the necessity of application in the food industry. Representative gross stomach images, taken from intact or HE‐treated mice.
Journal Article
Prevention of Pseudomonas aeruginosa Biofilm Formation on Soft Contact Lenses by Allium sativum Fermented Extract (BGE) and Cannabinol Oil Extract (CBD)
by
Liguori, Giorgio
,
Nigro, Roberto
,
Maione, Angela
in
Allium sativum
,
Antibiotics
,
Antimicrobial agents
2019
Two natural mixtures, Allium sativum fermented extract (BGE) and cannabinol oil extract (CBD), were assessed for their ability to inhibit and remove Pseudomonas aeruginosa biofilms on soft contact lenses in comparison to a multipurpose Soft Contact Lens-care solution present on the Italian market. Pseudomonas aeruginosa (ATCC 9027 strain) and Pseudomonas aeruginosa clinical strains isolated from ocular swabs were tested. Quantification of the biofilm was done using the microtiter plate assay and the fractional inhibitory concentration index was calculated. Both forms of Pseudomonas aeruginosa generated biofilms. BGE at minimal inhibitory concentration (MIC) showed inhibition percentages higher than 55% for both strains, and CBD inhibited biofilm formation by about 70%. The care solution at MIC inhibited biofilm formation by about 50% for both strains tested. The effect of BGE on the eradication of the microbial biofilm on soft contact lenses at MIC was 45% eradication for P. aeruginosa ATCC 9027 and 36% for P. aeruginosa clinical strain. For CBD, we observed 24% biofilm eradication for both strains. For the care solution, the eradication MICs were 43% eradication for P. aeruginosa ATCC 9027 and 41% for P. aeruginosa clinical strain. It was observed that both the test soft contact lenses solution/BGE (fractional inhibitory concentration index: 0.450) and the test soft contact lenses solution/CBD (fractional inhibitory concentration index: 0.153) combinations exhibited synergistic antibiofilm activity against most of the studied bacteria. The study showed that BGE and CBD have good effect on inhibition of biofilm formation and removal of preformed biofilms, which makes them promising agents that could be exploited to develop more effective care solutions.
Journal Article
Comparative Analysis of the Effect of Dietary Supplementation with Fermented and Water-Extracted Leaf Extracts of Eucommia ulmoides on Egg Production and Egg Nutrition
2024
Although the water extract of Eucommia ulmoides leaf (WEE) promotes egg laying in hens, its palatability is poor. To improve the palatability of E. ulmoides leaf, probiotic fermentation was used, and fermented extract E. ulmoides leaf (FEE) was prepared using Lactiplantibacillus plantarum. The safety of FEE was investigated using a long-term toxicity test, and no oxidative damage, inflammatory reactions, or histological lesions were observed in the experimental rats receiving dietary supplementation of FEE at 200 mg/kg, suggesting that FEE is suitable for long-term feeding. Subsequently, dietary supplementation of FEE (group C) in comparison with dietary supplementation of WEE (group B), as well as a control (group A), was applied in the hen industry. Laying performance, egg quality, egg nutrition, egg flavor, and the gut microbiome were analyzed comparatively. Interestingly, the laying rate was observed to be four percentage points higher with dietary supplementation of FEE at 200 mg/kg compared with the control and two percentage points higher compared with the dietary addition of WEE at the same dosage. Simultaneously, a slight upregulation in daily feed consumption was determined in the FEE-supplemented group compared with the blank control and the WEE-supplemented group, indicating that the inclusion of FEE stimulated the hens’ appetite. Moreover, variations in egg amino acids, fatty acids, and volatile components were obtained with either dietary addition, FEE or WEE, implying that dietary supplementation of the fermented and water-extracted E. ulmoides leaf extracts contributed to egg flavor change. Furthermore, variations in the gut microbiota were mediated by FEE, increasing the relative abundance of the genus Lactobacillus. These alterations in gut microbiota were tightly related to improved laying performance and egg flavor changes. Our results indicate that FEE is a better alternative feed additive in the hen industry than WEE.
Journal Article
Field assessment of the effects of Citrus aurantifolia Christm and Eucalyptus camaldulensis Dehnh extracts for the management of Bemisia tabaci Gennadius on Solanum melongena L. in north west Nigeria
by
Koul, Bhupendra
,
Abubakar, Mustapha
in
Agricultural production
,
Agricultural research
,
Bemisia tabaci
2023
The whitefly (
Bemisia tabaci
Gennadius) is a destructive sap-sucking pest of agricultural importance ravaging various vegetables causing significant damage and crop yield penalty. Its management is largely dependent on the synthetic pesticides despite their negative effects on human health and environment. The aim of this study was to analyze the efficacy of
Citrus aurantifolia
Christm and
Eucalyptus camaldulensis
Dehnh extracts against the whitefly on eggplant (
Solanum melongena
L.) under field conditions during 2022 and 2023 cropping seasons. The results revealed that citrus fermented extract (200 mL L
− 1
) was more effective with an average of 13.4 whiteflies/leaf, followed by eucalyptus oil (30 mL L
− 1
) with 17.2 whiteflies/leaf, 15 days after the 1st spray in 2022 experiment. Citrus essential oil (10 mL L
− 1
) was least effective during the same period with 29.4 whiteflies/leaf as compared to the control with 36.8 whiteflies/leaf. In 2023 experiment, eucalyptus oil (30 mL L
− 1
) and citrus fermented extract (200 mL L
− 1
) effectively reduced the whitefly number (13.1 and 16.1 whiteflies/leaf) while their aqueous extracts (100 mL L
− 1
) were least effective (27.8 and 31.3 whiteflies/leaf). In both the years (2022 and 2023), eucalyptus oil (30 mL L
− 1
) remained most effective with an average of 1.8 and 1.5 whiteflies/leaf (93.23 and 95.50% reduction in whitefly count), 45 days after the 3rd spray. The phytochemicals analyzed in this research demonstrated high efficacy and are therefore recommended as eco-friendly alternatives to synthetic chemicals in the management of whiteflies for sustainable vegetable cultivation.
Journal Article
Forsythia suspensa leaf fermented tea extracts attenuated oxidative stress in mice via the Ref-1/HIF-1α signal pathway and modulation of gut microbiota
2025
Forsythia suspensa
leaf fermented tea (FSLFT) is made from tender buds of
Forsythia suspensa
collected in spring. The main active components of FSLFT include forsythiaside, forsythia ester glycoside, rutin, and forsythia flavonoids, which have antibacterial, antioxidant, liver-protective, and immune-regulatory effects. Oxidative stress can trigger excessive apoptosis in intestinal epithelial cells, leading to dysfunction of the small intestinal mucosa and impaired intestinal absorption. This study focused on Kunming mice as research subjects and used hydrogen peroxide as an inducer to investigate the antioxidant and anti-inflammatory effects of FSLFT in vivo, as well as its regulatory effects on the intestinal microbiota of mice. The aim of this study was to establish a theoretical foundation for the functional study of
Forsythia suspensa
leaves and provide specific recommendations for their growth and application. The results showed that H
2
O
2
treatment led to an increase in oxidative levels in mice. FSLFT has been shown to have antioxidant effects via the Redox Factor-1(Ref-1)/ hypoxia-inducible factor-1 alpha (HIF-1α) pathway, reduce inflammation caused by hydrogen peroxide through the Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway, and protect mouse colons from oxidative stress by repairing gut microbiota imbalance and increasing microbial diversity and abundance. These findings establish a theoretical basis for studying the functional properties of FSLFT.
Journal Article
Evaluating the urate-lowering effects of different microbial fermented extracts in hyperuricemic models accompanied with a safety study
2017
Uric acid (UA) is an end product of purine metabolism by the enzyme xanthine oxidase (XOD). Hyperuricemia is characterized by the accumulation of serum UA and is an important risk factor for gout and many chronic disorders. XOD inhibitors or uricase (catalyzes UA to the more soluble end product) can prevent these chronic diseases. However, currently available hypouricemic agents induce severe side effects. Therefore, we developed new microbial fermented extracts (MFEs) with substantial XOD inhibition activity from Lactobacillus (MFE-21) and Acetobacter (MFE-25), and MFE-120 with high uricase activity from Aspergillus. The urate-lowering effects and safety of these MFEs were evaluated. Our results showed that MFE-25 exerts superior urate-lowering effects in the therapeutic model. In the preventive model, both MFE-120 and MFE-25 significantly reduced UA. The results of the safety study showed that no organ toxicity and no treatment-related adverse effects were observed in mice treated with high doses of MFEs. Taken together, the results showed the effectiveness of MFEs in reducing hyperuricemia without systemic toxicity in mice at high doses, suggesting that they are safe for use in the treatment and prevention of hyperuricemia.
[Display omitted]
Journal Article