Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
26 result(s) for "ferric reducing antioxidant power (FRAP)"
Sort by:
Olive Leaf Extracts With High, Medium, or Low Bioactive Compounds Content Differentially Modulate Alzheimer's Disease via Redox Biology
Alzheimer's disease (AD) involves β‐amyloid plaques and tau hyperphosphorylation, driven by oxidative stress and neuroinflammation. Cyclooxygenase‐2 (COX‐2) and acetylcholinesterase (AChE) activities exacerbate AD pathology. Olive leaf (OL) extracts, rich in bioactive compounds, offer potential therapeutic benefits. This study aimed to assess the anti‐inflammatory, anti‐cholinergic, and antioxidant effects of three OL extracts (low, mid, and high bioactive content) in vitro and their protective effects against AD‐related proteinopathies in Caenorhabditis elegans models. OL extracts were characterized for phenolic composition, AChE and COX‐2 inhibition, as well as antioxidant capacity. Their effects on intracellular and mitochondrial reactive oxygen species (ROS) were tested in C. elegans models expressing human Aβ and tau proteins. Gene expression analyses examined transcription factors (DAF‐16, skinhead [SKN]‐1) and their targets (superoxide dismutase [SOD]‐2, SOD‐3, GST‐4, and heat shock protein [HSP]‐16.2). High‐OL extract demonstrated superior AChE and COX‐2 inhibition and antioxidant capacity. Low‐ and high‐OL extracts reduced Aβ aggregation, ROS levels, and proteotoxicity via SKN‐1/NRF‐2 and DAF‐16/FOXO pathways, whereas mid‐OL showed moderate effects through proteostasis modulation. In tau models, low‐ and high‐OL extracts mitigated mitochondrial ROS levels via SOD‐2 but had limited effects on intracellular ROS levels. High‐OL extract also increased GST‐4 levels, whereas low and mid extracts enhanced GST‐4 levels. OL extracts protect against AD‐related proteinopathies by modulating oxidative stress, inflammation, and proteostasis. High‐OL extract showed the most promise for nutraceutical development due to its robust phenolic profile and activation of key antioxidant pathways. Further research is needed to confirm long‐term efficacy. Olive leaf (OL) extracts were assessed for biomedical and phytochemical profiles. High‐OL extract was the most effective in inhibiting AChE, COX‐2, and iron‐reducing activity. Low‐ and high‐OL extracts showed significant effects against Aβ and tau toxicity in vivo. All extracts modulated redox biology at different levels. Only high‐OL extract prevented mitochondrial ROS accumulation.
Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features
Phenolic acids are naturally occurring compounds that are known for their antioxidant and antiradical activity. We present experimental and theoretical studies on the antioxidant potential of the set of 22 phenolic acids with different models of hydroxylation and methoxylation of aromatic rings. Ferric reducing antioxidant power assay was used to evaluate this property. 2,3-dihydroxybenzoic acid was found to be the strongest antioxidant, while mono hydroxylated and methoxylated structures had the lowest activities. A comprehensive structure–activity investigation with density functional theory methods elucidated the influence of compounds topology, resonance stabilization, and intramolecular hydrogen bonding on the exhibited activity. The key factor was found to be a presence of two or more hydroxyl groups being located in ortho or para position to each other. Finally, the quantitative structure–activity relationship approach was used to build a multiple linear regression model describing the dependence of antioxidant activity on structure of compounds, using features exclusively related to their topology. Coefficients of determination for training set and for the test set equaled 0.9918 and 0.9993 respectively, and Q2 value for leave-one-out was 0.9716. In addition, the presented model was used to predict activities of phenolic acids that haven’t been tested here experimentally.
Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report)
The chemical diversity of natural antioxidants (AOXs) makes it difficult to separate, detect, and quantify individual antioxidants from a complex food/biological matrix. Moreover, the total antioxidant power is often more meaningful to evaluate health beneficial effects because of the cooperative action of individual antioxidant species. Currently, there is no single antioxidant assay for food labeling because of the lack of standard quantification methods. Antioxidant assays may be broadly classified as the electron transfer (ET)- and hydrogen atom transfer (HAT)-based assays. The results obtained are hardly comparable because of the different mechanisms, redox potentials, pH and solvent dependencies, etc. of various assays. This project will aid the identification and quantification of properties and mutual effects of antioxidants, bring a more rational basis to the classification of antioxidant assays with their constraints and challenges, and make the results more comparable and understandable. In this regard, the task group members convey their own experiences in various methods of antioxidants measurement.
Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts
Thirteen apple cultivars were analyzed for their total phenolic content, total flavonoids, anthocyanins, ascorbic acid in methanolic extracts of both peel and cortex fractions. Three in vitro assays (FRAP, DPPH, and CUPRAC) were used to determine the antioxidant activity. Concentration of the phytochemicals studied varied greatly between the apple peel and the cortex region. Peels showed ~ 2.8 times higher total phenolic content and ~ 2.68% higher flavonoid content than the cortex. Principal component analysis could successfully explain 76.86% and 84.27% variability in the antioxidant determinants (antioxidants/assays) in the peel and cortex region of apple cultivars, respectively. Major contributor for antioxidant activity in both apple peel and cortex was total flavonoid content. Cultivars ‘Well Spur’ and ‘Oregon Spur II’ were found to be substantially rich in these two antioxidants. The antioxidant activity was best expressed by the in vitro FRAP assay in both the fractions. Non-hierarchical K-medoids clustering reflected the presence of an antioxidant/ assay protocol apart from the antioxidant/assay we considered in this study that needs further exploration to get full spectra of antioxidant profile across apple genotypes. Based on multivariate analysis and the concept of RACI, the FRAP antioxidant assay is recommended for determining antioxidant activity in apples.
Evaluation of Antioxidant Properties and Mineral Composition of Purslane (Portulaca oleracea L.) at Different Growth Stages
The main objective of this research was to appraise the changes in mineral content and antioxidant attributes of Portulaca oleracea over different growth stages. The antioxidant activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP) assays. The iodine titration method was used to determine the ascorbic acid content (AAC). DPPH scavenging (IC50) capacity ranged from 1.30 ± 0.04 to 1.71 ± 0.04 mg/mL, while the ascorbic acid equivalent antioxidant activity (AEAC) values were 229.5 ± 7.9 to 319.3 ± 8.7 mg AA/100 g, total phenol content (TPC) varied from 174.5 ± 8.5 to 348.5 ± 7.9 mg GAE/100 g. AAC 60.5 ± 2.1 to 86.5 ± 3.9 mg/100 g and FRAP 1.8 ± 0.1 to 4.3 ± 0.1 mg GAE/g. There was good correlation between the results of TPC and AEAC, and between IC50 and FRAP assays (r2 > 0.9). The concentrations of Ca, Mg, K, Fe and Zn increased with plant maturity. Calcium (Ca) was negatively correlated with sodium (Na) and chloride (Cl), but positively correlated with magnesium (Mg), potassium (K), iron (Fe) and zinc (Zn). Portulaca olerecea cultivars could be used as a source of minerals and antioxidants, especially for functional food and nutraceutical applications.
Optimisation of Bee Pollen Extraction to Maximise Extractable Antioxidant Constituents
This paper presents the findings of a comprehensive review on common bee pollen processing methods which can impact extraction efficiency and lead to differences in measured total phenolic content (TPC) and radical scavenging activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) data. This hampers the comparative analysis of bee pollen from different floral sources and geographical locations. Based on the review, an in-depth investigation was carried out to identify the most efficient process to maximise the extraction of components for measurement of TPC, DPPH and FRAP antioxidant activity for two bee pollen samples from western Australia (Jarrah and Marri pollen). Optimisation by Design of Experiment with Multilevel Factorial Analysis (Categorical) modelling was performed. The independent variables included pollen pulverisation, the extraction solvent (70% aqueous ethanol, ethanol, methanol and water) and the extraction process (agitation, maceration, reflux and sonication). The data demonstrate that non-pulverised bee pollen extracted with 70% aqueous ethanol using the agitation extraction method constitute the optimal conditions to maximise the extraction of phenolics and antioxidant principles in these bee pollen samples.
Apple Pomace as a Potential Source of Oxidative Stress-Protecting Dihydrochalcones
Among fruits, the apple is unique for producing large amounts of the dihydrochalcone phloridzin, which, together with phloretin, its aglycone, is valuable to the pharmaceutical and food industries for its antidiabetic, antioxidant, and anticarcinogenic properties, as well as its use as a sweetener. We analysed the phloridzin concentration, total phenolic content, and antioxidant activity in the peel, flesh, seeds, juice, and pomace of 13 international and local apple varieties. In the unprocessed fruit, the seeds had the highest phloridzin content, while the highest total phenolic contents were mostly found in the peel. In processed samples, phloridzin and the total phenolic compounds especially were higher mostly in juice than in pomace. Moreover, the total phenolic content was much higher than the phloridzin content. Juice showed the highest antioxidant activity, followed by the peel and flesh. Across all samples, antioxidant activity did not directly correlate with phloridzin concentrations, suggesting that the antioxidant activity ascribed to phloridzin may need re-evaluation. In the Ferric Reducing Antioxidant Power (FRAP) assay, phloridzin only showed antioxidant activity at high concentrations when compared to its aglycone, phloretin. Considering the large amounts of apple juice produced by the juice industry, residual pomace is a promising source of phloridzin. For technical use, processing this phloridzin to phloretin would be advantageous.
Antioxidant Properties of Four Commonly Consumed Popular Italian Dishes
Four popular dishes belonging to Italian cuisine and widely consumed in the country were experimentally prepared in a dedicated lab-kitchen following a validated and standardized protocol. This study provides their antioxidant properties evaluating the contribution of extractable and non-extractable bioactive compounds, and identifying the assessment of interactions between their natural active compounds and the food matrix. Ferric reducing antioxidant power (FRAP) values in aqueous-organic extract ranged from the highest antioxidant activity in torta di mele (10.72 µmol/g d.m.) to that in besciamella (2.47 µmol/g d.m.); in residue, pasta alla carbonara reached the highest value (73.83 µmol/g d.m.) following by that in pasta alla amatriciana (68.64 µmol/g d.m.). Total polyphenol content (TPC) ranged in aqueous-organic extracts between 36.50 and 64.28 mg/100 g d.m. and in residue from 425.84 to 1747.35 mg/100 g d.m. Our findings may contribute to the updating of the Italian Food Composition Database, by providing for the first time a value for the antioxidant properties. This could contribute to encourage the consumption of recipes rich in key nutrients and bioactive molecules. This information is useful and important for determining the association between diet and a healthy status.
2-((4-Phenyl-5-(2-(p-tolylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)-N′-(1-phenylethylidene)acetohydrazide
A synthesis of 2-((4-phenyl-5-(2-(p-tolylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)-N’-(1-phenylethylidene)acetohydrazide from 2-[(3-2-[(4-methylphenyl)amino]ethyl-4-phenyl-4,5-dihydro-1H-1,2,4-triazol-5-yl)sulfanyl]acetohydrazide and acetophenone is reported. The title compound has been tested to possess 1.5-fold higher antioxidant ability than the control, butylated hydroxytoluene, as determined by a Ferric reducing antioxidant power assay.
Chestnut Wood Mud as a Source of Ellagic Acid for Dermo-Cosmetic Applications
Ellagic acid (EA) has long been recognized as a very active antioxidant, anti-inflammatory, and antimicrobial agent. However, its low bioavailability has often hampered its applications in health-related fields. Here, we report a phospholipid vesicle-based controlled release system for EA, involving the exploitation of chestnut wood mud (CWM), an industrial by-product from chestnut tannin production, as a largely available and low-cost source of this compound. Two kinds of CWM with different particle size distributions, indicated as CWM-A and CWM-B (<100 and 32 µm, respectively), containing 5 ± 1% w/w EA, were incorporated into transfersomes. The latter were small in size (~100 nm), homogeneously dispersed, and negatively charged. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated up to three-fold improvement in the antioxidant properties of CWM upon incorporation into transfersomes. The kinetics of EA released under simulated physiological conditions were evaluated by UV-Vis spectroscopy and HPLC analysis. The best results were obtained with CWM-B (100% of EA gradually released after 37 days at pH 7.4). A stepwise increase in the antioxidant properties of the released material was also observed. Cell-based experiments confirmed the efficacy of CWM-B transfersomes as antioxidant agents in contrasting photodamage.