Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,720
result(s) for
"ferrous sulfate"
Sort by:
Effective Removal of Copper(II) Ion from Polluted Water Using Ferric Oxide-Chitosan Composite: Kinetic, Equilibrium and Adsorption Mechanism Studies
by
Liu, Shifeng
,
Zhao, Chen
,
Zhou, Yufei
in
Adsorption
,
Analysis
,
Atmospheric Protection/Air Quality Control/Air Pollution
2025
In the current research, ferric oxide-chitosan composite (FOCC) was synthesized by loading chitosan with ferric oxide which was obtained from a kind of ferrous sulfate waste liquid by chemical precipitation, and FOCC was used to adsorb the copper(II) ion from polluted water. The effects of copper(II) ion adsorption experimental factors including initial pH, FOCC dosage and contact time on the removal efficiency were determined, and the related copper(II) ion adsorption mechanism was discussed. The copper(II) ion adsorption optimization study was performed through Box–Behnken design (BBD), and the maximum efficiency of copper(II) ion removal reached 99.23% under the optimized adsorption conditions of initial pH = 5.57, FOCC dosage = 2.5 g/L, contact time = 15 min. The kinetics of copper(II) ion adsorption by FOCC fits well with the pseudo-second-order model (R
2
> 0.9920), indicating that the copper(II) ion adsorption process belongs chemisorption. The maximum adsorption capacity of FOCC for copper(II) ion is 14.81 mg/g when the temperature is 55 °C. Under the above temperature, the isothermal experiments show that the Langmuir model (R
2
> 0.9920) is more suitable for describing copper(II) ion adsorption process than the Freundlich model(R
2
> 0.9504). The adsorption of copper(II) ion onto FOCC is endothermic(
Δ
H
∘
<
0
) and spontaneous(
Δ
G
∘
<
0
). In general, the study demonstrates FOCC is a quite promising material for copper(II) ion removal from polluted water.
Journal Article
Biogas purification by a chemical absorption and biological oxidation process
by
Navaee-Ardeh Shahram
,
Cabana, Hubert
,
Ibrahim, Rania
in
Absorption
,
Biogas
,
Biological activity
2022
Abstract Due to its toxicity and corrosiveness, removal of hydrogen sulfide (H2S) from landfill biogas is essential in terms of environmental impacts and biogas valorization. This study evaluates the performance of a chemical-biological oxidation process for the purification of biogas. The treatment process consists of two separate phases. The first phase targets the elimination of 50 ppmv H2S concentration from the gaseous stream by ferric sulfate solution in the chemical absorption/oxidation reactor. This technique was 100% efficient for removing the H2S at 15 g L−1 ferric iron concentration and empty bed residence time of 7 min. The model validation indicated that the mass transfer limitation is the rate-determining phase in the chemical treatment process. Then, in the second phase, biological oxidation of the produced ferrous sulfate into ferric sulfate took place. The oxidation rates of up to 1 g Fe2+ L−1 h−1 and 0.8 g Fe2+ L−1.h−1 were achieved in the biological oxidation process with and without adding 0.1% w/v glucose, respectively.
Journal Article
A new spectrophotometric method for measuring ceruloplasmin ferroxidase activity: an innovative approach
2024
Ferroxidases are enzymes that participate in the iron metabolism of different organisms. They catalyze the oxidation of ferrous iron, Fe2⁺, into ferric iron, Fe3⁺, which is essential in iron homeostasis and physiological functioning. The present study describes a novel spectrophotometric method of serum ceruloplasmin ferroxidase activity. This method is easy to perform; it is also sensitive, specific, and rapid. In this method, ferrous ions are used as a substrate for the enzyme, with either salicylic acid or sulfosalicylic acid being taken as a chromogenic compound. These chromogens easily form a colored complex with ferric ions but are not formed with ferrous ions. In the enzymatic reaction, the ceruloplasmin ferroxidase enzyme catalyzes the oxidation of ferrous to ferric ions. The resulting increase in ferric ion concentration is then measured spectrophotometrically, following the formation of the colored complex. The complex formed has maximum absorbance at 540 nm in the case of salicylic acid and 490 nm in the case of sulfosalicylic acid. Comparatively, it was tested against the standard method to ascertain the new method’s effectuality and reliability for assaying ferroxidase activity. The determined correlation coefficient amounted to 0.99, showing a strong correlation between the results obtained by the two methods. This new spectrophotometric technique offers a simplified, sensitive, specific, and fast means of estimating ferroxidase activity. It avoids using concentrated strong acids in the procedure and correlates excellently with the standard technique. This sets up a potential alternative for accurately determining ferroxidase activity in biological samples.
Journal Article
Effects of ferrous sulfate modification on the fate of phosphorous in sewage sludge biochar and its releasing mechanisms in heavy metal contaminated soils
by
Aihemaiti, Aikelaimu
,
Yan, Feng
,
Cai, Yingying
in
Alkaline soils
,
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
2023
Modifications of sludge biochar with metal-based materials can enhance its fertilizing efficiency and improve safety. To elucidate the effects of ferrous sulfate modification on the fate of phosphorus in sludge biochar and its effect on phosphorus fractionation in soil, we investigated the changes in fractionation and bioavailability of phosphorus in modified sludge biochar and studied the changes in soil characteristics, microbial diversity and response, bioavailability, plant uptake of phosphorus, and heavy metals in contaminated soils after treatment with ferrous sulfate modified sludge biochar. The results demonstrated that ferrous sulfate modifications were conducive to the formation of moderately labile phosphorus in sludge biochar, and the concentrations increased by a factor of 2.7 compared to control. The application of ferrous sulfate-modified sludge biochar to alkaline heavy metal-contaminated soils enhanced the bioavailable, labile, and moderately labile phosphorus contents by a factor of 2.9, 3.0, and 1.6, respectively, whereas it obviously reduced the leachability and bioavailability of heavy metals in soils, exhibited great potentials in the fertilization and remediation of actual heavy metal-contaminated soils in mining areas. The biochar-induced reduction in soil pH, enhancement of organic matter, surface oxygen-containing functional groups, the abundance of
Gammaproteobacteria
, and its phosphonate degradation activity were primarily responsible for the solubilization of phosphorus from modified biochar in heavy metal-contaminated soils.
Journal Article
Ferrous Sulfate-Mediated Control of Phytophthora capsici Pathogenesis and Its Impact on Pepper Plant
by
Li, Xiaoliang
,
Yang, Yan
,
Liu, Zhaohua
in
Agricultural production
,
Asexual reproduction
,
Biomass
2023
Phytophthora capsici, a destructive fungal pathogen, poses a severe threat to pepper (Capsicum annuum L.) crops worldwide, causing blights that can result in substantial yield losses. Traditional control methods often come with environmental concerns or entail substantial time investments. In this research, we investigate an alternative approach involving ferrous sulfate (FeSO4) application to combat P. capsici and promote pepper growth. We found that FeSO4 effectively inhibits the growth of P. capsici in a dose-dependent manner, disrupting mycelial development and diminishing pathogenicity. Importantly, FeSO4 treatment enhances the biomass and resistance of pepper plants, mitigating P. capsici-induced damage. Microbiome analysis demonstrates that FeSO4 significantly influences soil microbial communities, particularly fungi, within the pepper root. Metabolomics data reveal extensive alterations in the redox metabolic processes of P. capsici under FeSO4 treatment, leading to compromised cell membrane permeability and oxidative stress in the pathogen. Our study presents FeSO4 as a promising and cost-effective solution for controlling P. capsici in pepper cultivation while simultaneously promoting plant growth. These findings contribute to a deeper understanding of the intricate interactions between iron, pathogen control, and plant health, offering a potential tool for sustainable pepper production.
Journal Article
Alkali recovery from bauxite residue via ferric sulfate dealkalization and convert dealkalization residue into a secondary iron resource
2024
The most effective means to promote the sustainability of the circular economy is to recycle waste from various sources, such as industry and commerce. This study aimed to investigate alkali recovery from bauxite residue and the potential of iron recovery from dealkalized bauxite residue via the ferric sulfate dealkalization method. Under constant solid–liquid ratio and temperature conditions, the optimal dealkalization rate reaches 99.17% whren bauxite residue, FeSO4, and H2O2 in a proportion of 2:3:2. After undergoing 4 dealkalization cycles,, the Na+concentration in the supernatant reached 1800 mg L−1, and the alkaline recovery rate increased to 90% with the addition of 5 g L−1 CaO. Compared to acid leaching, this dealkalization method demonstrated superior long-term effectiveness in regulating alkalinity. The formation of Fe(OH)3 facilitated cementation the bauxite residue particles and considerably improved filtration performance through adsorption, bridging, and cross-linking mechanisms. Furthermore, the iron content of the dealkalized BR increased from 46.97% to 76.24%, meeting the China Standard for production grade iron ores (V grade). Approximately 8 tons of bauxite residue were estimated to be consumed, resulting in the generation of 4.64 tons of CaSO4. Thus, this sustainable method offers complete reutilization of bauxite residue, contributing to waste minimization efforts.
Journal Article
Ferrous sulfate reverses cerebral metabolic abnormality induced by minimal hepatic encephalopathy
2023
Orally administered ferrous iron was previously reported to significantly improve the cognition and locomotion of patients with minimal hepatic encephalopathy (MHE). However, the metabolic mechanisms of the therapeutic effect of ferrous iron are unknown. In this study, MHE was induced in rats by partial portal vein ligation (PPVL), and was treated with ferrous sulfate. The Morris water maze was used to evaluate the cognitive condition of the rats. The metabolites observed by NMR and validated by liquid chromatography–mass spectrometry were defined as the key affected metabolites. The enzyme activities and trace element contents in the rat brains were also investigated. The Mn content was found to be increased but the ferrous iron content decreased in the cortex and striatum in MHE. Decreased oxoglutarate dehydrogenase activity and increased glutamine synthetase (GS) and pyruvate carboxylase (PC) activity were observed in the cortex of MHE rats. Decreased pyruvate dehydrogenase activity and increased GS and PC activity were observed in the striatum of MHE rats. The levels of BCAAs and taurine were significantly decreased, and the contents of GABA, lactate, arginine, aspartate, carnosine, citrulline, cysteine, glutamate, glutamine, glycine, methionine, ornithine, proline, threonine and tyrosine were significantly increased. These metabolic abnormalities described above were restored after treatment with ferrous sulfate. Pathway enrichment analysis suggested that urea cycle, aspartate metabolism, arginine and proline metabolism, glycine and serine metabolism, and glutamate metabolism were the major metabolic abnormalities in MHE rats, but these processes could be restored and cognitive impairment could be improved by ferrous sulfate administration.
Journal Article
Fundamental Investigation on a Foam-Generating Microorganism and Its Potential for Mobility Reduction in High-Permeability Flow Channels
2022
This study proposed a novel foam EOR technique using Pseudomonas aeruginosa to generate the foam and investigated the potential of the microbial foam EOR to modify the permeability of a high-permeability porous system. We investigated oxygen nanobubble, carbon dioxide nanobubble and ferrous sulfate concentrations to discover the optimal levels for activating the foam generation of the microorganism through cultivation experiments. We also clarified the behavior of the microbial foam generation and the bioproducts that contribute to the foam generation. The potential of the foam to decrease the permeability of high-permeability porous systems was evaluated through flooding experiments using sand pack cores. The foam generation became more active with the increase in the number of nanobubbles, while there was an optimal concentration of ferrous sulfate for foam generation. The foam was identified as being induced by the proteins produced by the microorganism, which can be expected to bring about several advantages over surfactant-induced foam. The foam successfully decreased the permeability of high-permeability sand pack cores to half of their initial levels. These results demonstrate that the microbial foam EOR has the potential to decrease the permeability of high-permeability porous systems and improve the permeability heterogeneity in oil reservoirs.
Journal Article
Silage Fermentation Quality, Anthocyanin Stability, and in vitro Rumen Fermentation Characteristic of Ferrous Sulfate Heptahydrate-Treated Black Cane (Saccharum sinensis R.)
by
Paengkoum, Pramote
,
Suong, Ngo Thi Minh
,
Paengkoum, Siwaporn
in
anthocyanin
,
Anthocyanins
,
Bacteria
2022
Pretreatment of lignocellulose agricultural biomass with iron prior to ensiling is required to accelerate biomass breakdown during fermentation, which could result in functional microorganisms and chemicals that reduce nutrition loss, harmful substances, and improve animal performance. The objective of this study was to investigate the effects of increasing dilutions of ferrous sulfate heptahydrate (FS) pretreatment at fresh matter concentrations of 0, 0.015, and 0.030% on the fermentation quality of black cane (BC) silage, anthocyanin stability, ruminal biogas, rumen fermentation profile, and microbial community. Pre-ensiled and silage materials were evaluated. High moisture, fiber, anthocyanin, and lignification of biomass, as well as undesirable ensiling microorganisms, were found in BC' pre-ensiled form. Increasing dilutions of FS incorporated into silages were observed to linearly decrease dry matter, anthocyanin, and nutritive value losses. The lignin values decreased linearly as the percentage of FS increased up to 0.030%. Given that the ruminants were fed pre-ensiled materials, BC silage treated with 0.030% FS dilution had comparable results to pre-ensiled BC in terms of increasing in vitro volatile fatty acid concentrations, maintaining total gas production, and reducing methane production, when compared to other FS-treated silages. In addition, BC silage treated with a 0.030% FS dilution inhibited methanogenic bacteria and regulated cellulolytic bacteria in rumen fluid. Overall, the anthocyanin content of BC remained constant throughout the rumen fermentation process after increasing dilutions of FS, indicating that BC is a viable ruminant feedstock and that pretreatment of BC with dilute FS-assisted ensiling at 0.030% could be used to generate ruminant diets.
Journal Article
Co-Administration of Iron and Bioavailable Curcumin Reduces Levels of Systemic Markers of Inflammation and Oxidative Stress in a Placebo-Controlled Randomised Study
by
Begum, Gulshanara
,
Zariwala, Mohammed Gulrez
,
Tiekou Lorinczova, Helena
in
adverse effects
,
antioxidants
,
Bioavailability
2022
Ferrous sulphate (FS) is widely used as an iron supplement to treat iron deficiency (ID), but is known to induce inflammation causing gastric side-effects resulting in poor adherence to supplement regimens. Curcumin, a potent antioxidant, has been reported to suppress inflammation via down regulation of NF-κB. The aim of the present double blind, placebo-controlled randomised trial was to assess whether co-administration of FS with a formulated, bioavailable form of curcumin (HydroCurc™) could reduce systemic inflammation and/or gastrointestinal side-effects. This study recruited 155 healthy participants (79 males; 26.42 years ± 0.55 and 76 females; 25.82 years ± 0.54), randomly allocated to one of five different treatment groups: iron and curcumin placebo (FS0_Plac), low dose (18 mg) iron and curcumin placebo (FS18_Plac), low dose iron and curcumin (FS18_Curc), high dose (65 mg) iron and curcumin placebo (FS65_Plac), and high dose iron and curcumin (FS65_Curc). Completed questionnaires and blood samples were collected from all participants at baseline (day 1), mid-point (day 21), and at end-point (day 42). Results showed a significant reduction in IL-6 in the FS65_Curc group (0.06 pg/mL ± 0.02, p = 0.0073) between the mid-point and end-point. There was also a significant reduction in mean plasma TNF levels in the FS65_Curc (0.65 pg/mL ± 0.17, p = 0.0018), FS65_Plac (0.39 pg/mL ± 0.15, p = 0.0363), and FS18_Curc (0.35 pg/mL ± 0.13, p = 0.0288) groups from mid-point to end-point. A significant increase was observed in mean plasma TBARS levels (0.10 µM ± 0.04, p = 0.0283) in the F18_Plac group from baseline to end-point. There was a significant association with darker stools between FS0_Plac vs. FS65_Plac (p = 0.002, Fisher’s exact test) suggesting that high iron dose in the absence of curcumin leads to darker stools. A reduction in inflammation-related markers in response to co-administering supplemental iron alongside formulated curcumin suggests a reduction in systemic inflammation. This supplementation approach may therefore be a more cost effective and convenient alternative to current oral iron-related treatments, with further research to be conducted.
Journal Article