Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
87,497 result(s) for "finite element analysis"
Sort by:
SELECTION FOR MECHANICAL ADVANTAGE UNDERLIES MULTIPLE CRANIAL OPTIMA IN NEW WORLD LEAF-NOSED BATS
Selection for divergent performance optima has been proposed as a central mechanism underlying adaptive radiation. Uncovering multiple optima requires identifying forms associated with different adaptive zones and linking those forms to performance. However, testing and modeling the performance of complex morphologies like the cranium is challenging. We introduce a three-dimensional finite-element (FE) model of the cranium that can be morphed into different shapes by varying simple parameters to investigate the relationship between two engineering-based measures of performance, mechanical advantage and von Mises stress, and four divergent adaptive zones occupied by New World Leaf-nosed bats. To investigate these relationships, we tested the fit of Brownian motion and Ornstein–Uhlenbeck models of evolution in mechanical advantage and von Mises stress using dated multilocus phylogenies. The analyses revealed three performance optima for mechanical advantage among species from three adaptive zones: bats that eat nectar; generalized insectivores, omnivores and some frugivores; and bats that specialize on hard canopy fruits. Only two optima, one corresponding to nectar feeding, were consistently uncovered for von Mises stress. These results suggest that mechanical advantage played a larger role than von Mises stress in the radiation of New World Leaf-nosed bats into divergent adaptive zones.
Analysis of Very Fast Transients Using Black Box Macromodels in ATP-EMTP
Modelling for very fast transients (VFTs) requires good knowledge of the behaviour of gas insulated substation (GIS) components when subjected to high frequencies. Modelling usually takes the form of circuit-based insulation coordination type studies, in an effort to determine the maximum overvoltages and waveshapes present around the system. At very high frequencies, standard transmission line modelling assumptions may not be valid. Therefore, the approach to modelling of these transients must be re-evaluated. In this work, the high frequency finite element analysis (FEA) was used to enhance circuit-based models, allowing direct computation of parameters from geometric and material characteristics. Equivalent models that replicate a finite element model’s frequency response for bus-spacer and 90° elbow components were incorporated in alternative transients program-electromagnetic transients program (ATP-EMTP) using a pole-residue equivalent circuit derived following rational fitting using the well-established and robust method of vector fitting (VF). A large model order is often required to represent this frequency dependent behaviour through admittance matrices, leading to increased computational burden. Moreover, while highly accurate models can be derived, the data extracted from finite element solutions can be non-passive, leading to instability when included in time domain simulations. A simple method of improved stability for FEA derived responses along with a method for identification of a minimum required model order for stability of transient simulations is proposed.
Significance of flow rule for the passive earth pressure problem
Determination of earth pressures is one of the fundamental tasks in geotechnical engineering. Although many different methods have been utilized to present passive earth pressure coefficients, the influence of non-associated plasticity on the passive earth pressure problem has not been discussed intensively. In this study, finite-element limit analysis and displacement finite-element analysis are applied for frictional materials. Results are compared with selected data from literature in terms of passive earth pressure coefficients, shape of failure mechanism and robustness of the numerical simulation. The results of this study show that passive earth pressure coefficients determined with an associated flow rule are comparable to the Sokolovski solution. However, comparison with a non-associated flow rule reveals that passive earth pressure coefficients are significantly over predicted when following an associated flow rule. Moreover, this study reveals that computational costs for determination of passive earth pressure are considerably larger following a non-associated flow rule. Additionally, the study shows that numerical instabilities arise and failure surfaces become non-unique. It is shown that this problem may be overcome by applying the approach suggested by Davis (Soil Mech 341–354, 1968).
Morphological Characteristics of Inferior Pole Patellar Fractures and a Finite‐Element Analysis Combined With a Retrospective Clinical Study of Anchor Suture and Titanium Cable Cerclage Treatment
Objective Inferior pole patellar fractures (IPPFs) pose a significant challenge due to their complex fracture patterns and high risk of complications associated with current treatment methods. This study aims to (1) characterize the fracture patterns of IPPFs using fracture mapping and (2) compare the biomechanical stability and clinical outcomes of treatment with anchor suture with patellar cerclage versus Kirschner‐wire tension band combined with patellar cerclage. Methods (1) A retrospective analysis was conducted on 61 patients with IPPF. For each case, fracture reduction was manually simulated, with fracture lines and fragments overlaid onto a complete patella template to identify fracture patterns. (2) Finite‐element models were used to analyze the mechanical properties of anchor suture and titanium cable cerclage treatment and Kirschner‐wire tension band combined with patellar cerclage in treating IPPFs. Additionally, a retrospective analysis of clinical data was performed on 57 patients with IPPF (AO/OTA 34 A1) treated at our institution between January 1, 2023, and December 25, 2023. Of these, 18 patients underwent anchor suture and titanium cable cerclage (Group A), and 39 underwent Kirschner‐wire tension band combined with patellar cerclage (Group B). We compared operative time, final knee range of motion, incidence of secondary surgery, postoperative complications, and functional recovery between the two groups based on medical records and follow‐up results. Results (1) IPPFs were predominantly comminuted, with fracture lines on the anterior view concentrated laterally and near the superior surface of the inferior pole. Fracture lines became more sparse as they approached the distal patella. The posterior view was similar to the anterior, with the majority of fractures near the superior surface of the inferior pole. (2) Finite‐element analysis revealed no significant differences between the two groups in terms of displacement and stress. Operative time was similar between the groups (p > 0.05), as were final knee range of motion (p > 0.05) and postoperative Bostman scores (p > 0.05). Group A had no postoperative complications or readmissions, while Group B had two cases of hardware irritation and one case of knee joint infection. Conclusion The fracture lines of IPPF are varied, often comminuted, and correlate with the mechanism of injury. Biomechanical and clinical outcomes suggest that anchor suture with patellar cerclage is a viable option for stabilizing IPPF. Trial Registration: ClinicalTrials.gov identifier: NCT06736639 This study characterizes the fracture patterns of inferior pole patellar fractures (IPPFs) and compares the clinical outcomes of anchor suture with titanium cable cerclage versus Kirschner‐wire tension band. Finite‐element analysis and clinical results indicate that anchor suture with cerclage provides stable fixation and is associated with fewer postoperative complications.
Railway Track Stress–Strain Analysis Using High-Precision Accelerometers
We propose a new approach for railway path diagnostics on the basis of track line stress–strain analysis using the data provided by high-precision accelerometers. This type of sensor provides sufficient accuracy with lower costs, and enables the development of a railway digital twin, according to the concept of the Internet of Things. The installation of sensors on a railway track along its entire length allows real-time monitoring of the states of the technical parameters of the railway track, and using mathematical methods to evaluate its wear on the basis of constantly received data. This paper presents an original 3D model of a railway track line and the results of its analysis using a finite element method. To test the model, we performed an analysis of the normal stresses and deformations in the elements of a railway track by simulating the impact of rolling stock on a section of a railway track with intermediate rail fastenings, ZhBR-65SH. The research results were probated and tested at the testing ground of the Kuibyshev branch of Russian Railways, the Samara track. The proposed approach makes it possible to determine the load of the track, and knowing the movement of the rail, to calculate the structural stress in the elements of the railway track, to constantly monitor the parameters of the slope and rail subsidence.
A two-step dynamic FEM-FELA approach for seismic slope stability assessment
The determination of the factor of safety (FoS) of slopes during seismic excitation can be complex if the relevant effects of pore water pressure accumulation, nonlinear material response and variable shear strength are duly accounted for. A rational two-step approach to tackle this task based on a hydro-mechanically coupled dynamic simulation and finite element limit analyses is henceforth introduced. To ensure accurate transfer of the hydro-mechanical soil state, a mapping concept is presented, accounting for spatial distributions of stresses, excess pore water pressures, inertial forces and shear strength. The proposed approach is compared to limit equilibrium method (LEM) for the case of a large-scale water-saturated open cast mine slope subjected to seismic loading. In comparison with LEM, the new approach to assess seismic slope stability proves to be simpler in its implementation and straightforward, which could be an important asset for practitioners.
In situ MEMS testing: correlation of high-resolution X-ray diffraction with mechanical experiments and finite element analysis
New methods are needed in microsystems technology for evaluating microelectromechanical systems (MEMS) because of their reduced size. The assessment and characterization of mechanical and structural relations of MEMS are essential to assure the long-term functioning of devices, and have a significant impact on design and fabrication. Within this study a concept for the investigation of mechanically loaded MEMS materials on an atomic level is introduced, combining high-resolution X-ray diffraction (HRXRD) measurements with finite element analysis (FEA) and mechanical testing. In situ HRXRD measurements were performed on tensile loaded single crystal silicon (SCSi) specimens by means of profile scans and reciprocal space mapping (RSM) on symmetrical (004) and (440) reflections. A comprehensive evaluation of the rather complex XRD patterns and features was enabled by the correlation of measured with simulated, 'theoretical' patterns. Latter were calculated by a specifically developed, simple and fast approach on the basis of continuum mechanical relations. Qualitative and quantitative analysis confirmed the admissibility and accuracy of the presented method. In this context [001] Poisson's ratio was determined providing an error of less than 1.5% with respect to analytical prediction. Consequently, the introduced procedure contributes to further going investigations of weak scattering being related to strain and defects in crystalline structures and therefore supports investigations on materials and devices failure mechanisms.
Carbonized wood with ordered channels decorated by NiCo2O4 for lightweight and high-performance microwave absorber
Wood-derived carbon has a 3D porous framework composed of through channels along the growth direction, which is a suitable matrix for preparing electromagnetic wave (EMW) absorbing materials with low cost, light weight, and environmental friendliness. Herein, the carbonized wood decorated by short cone-like NiCo 2 O 4 (NiCo 2 O 4 @CW) with highly ordered straight-channel architecture was successfully manufactured through a facile calcination procedure. The horizontal arrangement of the through channels of NiCo 2 O 4 @CW (H-NiCo 2 O 4 @CW) exhibits a strong reflection loss value of -64.0 dB at 10.72 GHz with a thickness of 3.62 mm and a low filling ratio of 26 wt% (with the density of 0.98 g·cm -3 ), and the effective absorption bandwidth (EAB) is 8.08 GHz (9.92–18.0 GHz) at the thickness of 3.2 mm. The excellent microwave absorption (MA) property was ascribed to the ordered-channel structure with abundant interfaces and defects from NiCo 2 O 4 @CW, which could promote the interfacial polarization and dipole polarization. What is more, this advantageous structure increased the multiple reflections and scattering. Finite element analysis (FEA) simulation is carried out to detect the interaction between the prepared material and EMW when the ordered channels are arranged in different directions. This research provides a low-cost, sustainable, and environmentally friendly strategy for using carbonized wood to fabricate microwave absorbers with strong attenuation capabilities and light weight.
Generalized n-dimensional biomechanical field analysis using statistical parametric mapping
A variety of biomechanical data are sampled from smooth n-dimensional spatiotemporal fields. These data are usually analyzed discretely, by extracting summary metrics from particular points or regions in the continuum. It has been shown that, in certain situations, such schemes can compromise the spatiotemporal integrity of the original fields. An alternative methodology called statistical parametric mapping (SPM), designed specifically for continuous field analysis, constructs statistical images that lie in the original, biomechanically meaningful sampling space. The current paper demonstrates how SPM can be used to analyze both experimental and simulated biomechanical field data of arbitrary spatiotemporal dimensionality. Firstly, 0-, 1-, 2-, and 3-dimensional spatiotemporal datasets derived from a pedobarographic experiment were analyzed using a common linear model to emphasize that SPM procedures are (practically) identical irrespective of the data's physical dimensionality. Secondly two probabilistic finite element simulation studies were conducted, examining heel pad stress and femoral strain fields, respectively, to demonstrate how SPM can be used to probe the significance of field-wide simulation results in the presence of uncontrollable or induced modeling uncertainty. Results were biomechanically intuitive and suggest that SPM may be suitable for a wide variety of mechanical field applications. SPM's main theoretical advantage is that it avoids problems associated with a priori assumptions regarding the spatiotemporal foci of field signals. SPM's main practical advantage is that a unified framework, encapsulated by a single linear equation, affords comprehensive statistical analyses of smooth scalar fields in arbitrarily bounded n-dimensional spaces.
Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries
Using 2.1-µm high-resolution microcomputed tomography, we have examined the spatial distribution, clustering, and shape of nearly 35,000 microcalcifications (µCalcs) ≥ 5 µm in the fibrous caps of 22 nonruptured human atherosclerotic plaques. The vast majority of these µCalcs were <15 µm and invisible at the previously used 6.7-µm resolution. A greatly simplified 3D finite element analysis has made it possible to quickly analyze which of these thousands of minute inclusions are potentially dangerous. We show that the enhancement of the local tissue stress caused by particle clustering increases rapidly for gap between particle pairs (h)/particle diameter (D) < 0.4 if particles are oriented along the tensile axis of the cap. Of the thousands of µCalcs observed, there were 193 particle pairs with h / D ≤ 2 (tissue stress factor > 2), but only 3 of these pairs had h / D ≤ 0.4, where the local tissue stress could increase a factor > 5. Using nondecalcified histology, we also show that nearly all caps have µCalcs between 0.5 and 5 µm and that the µCalcs ≥ 5 µm observed in high-resolution microcomputed tomography are agglomerations of smaller calcified matrix vesicles. µCalcs < 5 µm are predicted to be not harmful, because the tiny voids associated with these very small particles will not explosively grow under tensile forces because of their large surface energy. These observations strongly support the hypothesis that nearly all fibrous caps have µCalcs, but only a small subset has the potential for rupture.