Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,101
result(s) for
"fire frequency"
Sort by:
What environmental and climatic factors influence multidecadal fire frequency?
by
Taylor, Chris
,
Lindenmayer, David
,
Blanchard, Wade
in
Australia
,
Biodiversity
,
biodiversity conservation
2023
Fire is a key ecosystem process with more than half the world's land surface potentially subject to fire. A key aspect of fire ecology is the fire regime, with fire frequency an important component. Fire frequency appears to be increasing in some ecosystems, but decreasing in others. Such temporal and spatial variability in fire frequency highlights the importance of more effectively quantifying spatiotemporal changes in fire frequency for particular environments. We modeled changes in fire frequency over the past 40 years (1981–2020) in a 4.64 million ha area in Victoria, Australia. We quantified regional variation in the number of fires (hereafter termed fire frequency) during two 20‐year time periods (1981–2000 vs. 2001–2020), employing the Interim Biogeographic Regionalisation for Australia (IBRA), a standardized regionalization of Australia's terrestrial landscapes. We also quantified the climate and environmental factors influencing fire frequency in each IBRA subregion. Our empirical analyses revealed that fire frequency in Victoria was heterogeneous in both time and space. Wildfire frequency changed between 1981 and 2020, with the past 20 years (2001–2020) experiencing a substantially greater number of fires relative to the 20 years prior (1981–2000). Changes in fire frequency were not spatially uniform, with increases more pronounced in some IBRA subregions than others. Climate and topographic factors influenced the frequency of wildfires, but their effects manifested differently in different IBRA subregions. For example, fire frequency was associated with increasing rainfall deficit deviation in four IBRA subregions, but an opposite trend characterized two others. Associations between fire frequency and increasing temperature deviation also varied from negative to positive across subregions. We also found evidence of elevation, slope, and aspect effects, but these too varied between IBRA subregions. The complex spatiotemporal changes in fire frequency quantified in this study, and the complex between‐region differences in the factors associated with the number of fires, have major implications for biodiversity conservation, resource availability (e.g., timber yields), and ecosystem integrity. In ecosystems subjected to repeated fires at short intervals, new rapid detection and swift suppression technologies may be required to reduce the risks of ecosystem collapse as high‐severity wildfires increase in frequency.
Journal Article
Effect of frequent bushfire on water supply reliability in Thomson Catchment, Victoria, Australia
by
Khastagir, Anirban
,
Hossain, Iqbal
,
Rahmat, Siti Nazahiyah
in
Ashes
,
Catchment areas
,
Catchments
2023
Melbourne’s water supply is dependent on forested catchments; consequently, frequent occurrence of fire events in these catchments will have detrimental effects on water supply reliability of Melbourne. This study analyses the effect of frequent bushfire events to estimate the reduction in the water yield after a major bushfire event in the Thomson reservoir, which is the largest reservoir supplying water to Melbourne. The Forest Fire Danger Index (FFDI) which is a measure of fire behaviour was used to carry out fire frequency analysis to estimate the frequency of occurrence of a bushfire with certain severity in the catchment area. Seven hypothetical scenarios were adopted to estimate the total water yield in 2010 after the 1939 bushfires considering the presence of manifold species in different parts of the Thomson catchment; subsequently, reduction in water yield was calculated for the catchment if a certain percentage of the catchment was burnt once every 10 years after 2010. If 10% of the Ash is burnt every 10 years, the percentage reduction in total water yield varies from 12.2 to 13.9% in 2050 for all seven scenarios considered in the analysis; similarly, the percentage reductions in water yield only from Ash species varies from 21.2 to 23.1% in 2050, if 10% of the Ash is burnt every 10 years. It is expected that improved cognizance of the effect of extreme bushfire events on water yield of Thomson catchment due to frequent bushfire events based on the findings from the existing study will facilitate the adequate preparedness for risks associated with frequent bushfire events in Victoria’s water supply catchments.
Journal Article
Future southcentral US wildfire probability due to climate change
by
Stroh, Esther D
,
Guyette, Richard P
,
Whittier, Joanna B
in
Agriculture
,
Annual precipitation
,
Climate change
2018
Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. In this paper, we present projections of future fire probability for the southcentral USA using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM). Future fire probability is projected to both increase and decrease across the study region of Oklahoma, New Mexico, and Texas. Among all end-of-century projections, change in fire probabilities (CFPs) range from − 51 to + 240%. Greatest absolute increases in fire probability are shown for areas within the range of approximately 75 to 160 cm mean annual precipitation (MAP), regardless of climate model. Although fire is likely to become more frequent across the southcentral USA, spatial patterns may remain similar unless significant increases in precipitation occur, whereby more extensive areas with increased fire probability are predicted. Perhaps one of the most important results is illumination of climate changes where fire probability response (+, −) may deviate (i.e., tipping points). Fire regimes of southcentral US ecosystems occur in a geographic transition zone from reactant- to reaction-limited conditions, potentially making them uniquely responsive to different scenarios of temperature and precipitation changes. Identification and description of these conditions may help anticipate fire regime changes that will affect human health, agriculture, species conservation, and nutrient and water cycling.
Journal Article
Assessing Impact of Multiple Fires on a Tropical Peat Swamp Forest Using High and Very High-Resolution Satellite Images
2021
Tropical peat swamp forests, found mainly in Southeast Asia, have been threatened by recurring El Niño fires. Repeated burnings form a complex and heterogeneous landscape comprising a mosaic of burned patches of different fire frequencies, requiring fine-scale assessment to understand their impact. We examined the impact of the El Niño fires of 1998 and 2003 on a tropical peat swamp forest in northern Borneo, with the combined use of high and very high-resolution satellite images. Object-based and pixel-based classifications were compared to classify a QuickBird image. Burned patches of different fire frequencies were derived based on unsupervised classification of the principal components of multitemporal Normalized Difference Water Index (NDWI) data. The results show that the object-based classification was more accurate than the pixel-based classification for generating a detailed land cover map. Fire frequency had a severe impact on the number of burned patches and the residual forest cover. Larger patch area retained more residual forest cover for the burned patches. Forest structure of burned-twice patches was more severely altered compared to burned-once patches. Two burned-once patches had a relatively promising recovery potential by natural regeneration due to higher residual forest cover, a vast number of large trees, and aboveground biomass. Except for the largest patch, rehabilitation seemed inevitable for burned-twice patches. This approach can be applied to assess the impact of multiple fires on other forest types for better post-fire forest management.
Journal Article
Landscape fragmentation, severe drought, and the new Amazon forest fire regime
2015
Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.
Journal Article
High fire frequency and the impact of the 2019–2020 megafires on Australian plant diversity
by
Auld, Tony D.
,
Adams, Vanessa M.
,
Allen, Stuart
in
Australia
,
Biodiversity
,
biodiversity assessment
2021
Aim To quantify the impact of the 2019–2020 megafires on Australian plant diversity by assessing burnt area across 26,062 species ranges and the effects of fire history on recovery potential. Further, to exemplify a strategic approach to prioritizing plant species affected by fire for recovery actions and conservation planning at a national scale. Location Australia. Methods We combine data on geographic range, fire extent, response traits and fire history to assess the proportion of species ranges burnt in both the 2019–2020 fires and the past. Results Across Australia, suitable habitat for 69% of all plant species was burnt (17,197 species) by the 2019–2020 fires and herbarium specimens confirm the presence of 9,092 of these species across the fire extent since 1950. Burnt ranges include those of 587 plants listed as threatened under national legislation (44% of Australia's threatened plants). A total of 3,998 of the 17,197 fire‐affected species are known to resprout after fire, but at least 2,928 must complete their entire life cycle—from germinant to reproducing adult—prior to subsequent fires, as they are killed by fire. Data on previous fires show that, for 257 species, the historical intervals between fire events across their range are likely too short to allow regeneration. For a further 411 species, future fires during recovery will increase extinction risk as current populations are dominated by immature individuals. Main conclusion Many Australian plant species have strategies to persist under certain fire regimes, and will recover given time, suitable conditions and low exposure to threats. However, short fire intervals both before and after the 2019–2020 fire season pose a serious risk to the recovery of at least 595 species. Persistent knowledge gaps about species fire response and post‐fire population persistence threaten the effective long‐term management of Australian vegetation in an increasingly pyric world.
Journal Article
Influences of fire-vegetation feedbacks and post-fire recovery rates on forest landscape vulnerability to altered fire regimes
by
Tepley, Alan J.
,
Holz, Andrés
,
Thomann, Enrique
in
alternative stable state
,
asymmetry
,
burning
2018
1. In the context of ongoing climatic warming, forest landscapes face increasing risk of conversion to non-forest vegetation through alteration of their fire regimes and their post-fire recovery dynamics. However, this pressure could be amplified or dampened, depending on how fire-driven changes to vegetation feed back to alter the extent or behaviour of subsequent fires. 2. Here we develop a mathematical model to formalize understanding of how firevegetation feedbacks and the time to forest recovery following high-severity (i.e. stand-replacing) fire affect the extent and stability of forest cover across landscapes facing altered fire regimes. We evaluate responses to increasing burn rates while varying the direction (negative vs. positive) of fire-vegetation feedbacks under a continuum of values for feedback strength and post-fire recovery time. In doing so, we determine how interactions among these variables produce thresholds and tipping points in landscape responses to changing fire regimes. 3. Where the early-seral vegetation was less fire-prone than older forests, negative feedbacks limited the reductions in forest cover in response to higher fire frequency or slower forest recovery. By contrast, positive feedbacks (more flammable early-seral vegetation) produced a tipping point beyond which increases in burn rates or a slowing of forest recovery drove extensive forest loss. 4. With negative feedbacks, the rates of forest loss and expansion in response to variation in fire frequency were similar. However, where feedbacks were positive, the conversion from predominantly forested to non-forested conditions in response to increasing fire frequency was faster than the re-expansion of forest cover following a return to the initial burn rate. Strengthening the positive feedbacks increased this asymmetry. 5. Synthesis. Our analyses elucidate how fire-vegetation feedbacks and post-fire recovery rates interact to affect the trajectories and rates of landscape response to altered fire regimes. We illustrate the vulnerability of ecosystems with positive fire-vegetation feedbacks to climate change-driven increases in fire activity, especially where post-fire recovery is slow. Although negative feedbacks initially provide resistance to forest loss with increasing burn rates, this resistance is eventually overwhelmed with sufficient increases to burn rates relative to recovery times.
Journal Article
Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions
by
Abatzoglou, John T
,
Balch, Jennifer K
,
Bradley, Bethany A
in
Abundance
,
Anthropogenic factors
,
Bromus tectorum
2018
Cheatgrass (Bromus tectorum) is an invasive grass pervasive across the Intermountain Western US and linked to major increases in fire frequency. Despite widespread ecological impacts associated with cheatgrass, we lack a spatially extensive model of cheatgrass invasion in the Intermountain West. Here, we leverage satellite phenology predictors and thousands of field surveys of cheatgrass abundance to create regional models of cheatgrass distribution and percent cover. We compare cheatgrass presence to fire probability, fire seasonality and ignition source. Regional models of percent cover had low predictive power (34% of variance explained), but distribution models based on a threshold of 15% cover to differentiate high abundance from low abundance had an overall accuracy of 74%. Cheatgrass achieves ≥ 15% cover over 210,000 km2 (31%) of the Intermountain West. These lands were twice as likely to burn as those with low abundance, and four times more likely to burn multiple times between 2000 and 2015. Fire probability increased rapidly at low cheatgrass cover (1–5%) but remained similar at higher cover, suggesting that even small amounts of cheatgrass in an ecosystem can increase fire risk. Abundant cheatgrass was also associated with a 10 days earlier fire seasonality and interacted strongly with anthropogenic ignitions. Fire in cheatgrass was particularly associated with human activity, suggesting that increased awareness of fire danger in invaded areas could reduce risk. This study suggests that cheatgrass is much more spatially extensive and abundant than previously documented and that invasion greatly increases fire frequency, even at low percent cover.
Journal Article
Fire effects on tree physiology
by
Bär, Andreas
,
Mayr, Stefan
,
Michaletz, Sean T.
in
biotic attacks
,
cambium
,
Cambium - physiology
2019
Heat injuries sustained in a fire can initiate a cascade of complex mechanisms that affect the physiology of trees after fires. Uncovering the exact physiological mechanisms and relating specific injuries to whole-plant and ecosystem functioning is the focus of intense current research. Recent studies have made critical steps forward in our understanding of tree physiological processes after fires, and have suggested mechanisms by which fire injuries may interact with disturbances such as drought, insects and pathogens. We outline a conceptual framework that unifies the involved processes, their interconnections, and possible feedbacks, and contextualizes these responses with existing hypotheses for disturbance effects on plants and ecosystems. By focusing on carbon and water as currencies of plant functioning, we demonstrate fire-induced cambium/phloem necrosis and xylem damage to be main disturbance effects. The resulting carbon starvation and hydraulic dysfunction are linked with drought and insect impacts. Evaluating the precise process relationships will be crucial for fully understanding how fires can affect tree functionality, and will help improve fire risk assessment and mortality model predictions. Especially considering future climate-driven increases in fire frequency and intensity, knowledge of the physiological tree responses is important to better estimate postfire ecosystem dynamics and interactions with climate disturbances.
Journal Article
The fire frequency-severity relationship and the legacy of fire suppression in California forests
2015
Fire is one of the most important natural disturbance processes in the western United States and ecosystems differ markedly with respect to their ecological and evolutionary relationships with fire. Reference fire regimes in forested ecosystems can be categorized along a gradient ranging from \"fuel-limited\" to \"climate-limited\" where the former types are often characterized by frequent, lower-severity wildfires and the latter by infrequent, more severe wildfires. Using spatial data on fire severity from 1984-2011 and metrics related to fire frequency, we tested how divergence from historic (pre-Euroamerican settlement) fire frequencies due to a century of fire suppression influences rates of high-severity fire in five forest types in California. With some variation among bioregions, our results suggest that fires in forest types characterized by fuel-limited fire regimes (e.g., yellow pine and mixed conifer forest) tend to burn with greater proportions of high-severity fire as either time since last fire or the mean modern fire return interval (FRI) increases. Two intermediate fire regime types (mixed evergreen and bigcone Douglas-fir) showed a similar relationship between fire frequency and fire severity. However, red fir and redwood forests, which are characterized by more climate-limited fire regimes, did not show significant positive relationships between FRI and fire severity. This analysis provides strong evidence that for fuel-limited fire regimes, lack of fire leads to increasing rates of high-severity burning. Our study also substantiates the general validity of \"fuel-limited\" vs. \"climate-limited\" explanations of differing patterns of fire effects and response in forest types of the western US.
Journal Article