Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
216 result(s) for "fish discards"
Sort by:
Production of Marine Probiotic Bacteria in a Cost-Effective Marine Media Based on Peptones Obtained from Discarded Fish By-Products
The industrial production of marine bacteria with probiotic properties is limited by the excessive cost of the culture media adequate for their growth. The present work aimed to study the suitability of 30 marine media formulated with nitrogen sources (fish peptones) from different fish discards and seawater, for the growth of two marine probiotic bacteria (MPB), namely Phaeobacter sp. and Pseudomonas fluorescens. These fish peptones were produced from several discarded fish and by-products (heads, skins, and whole individuals of megrim, mackerel, gurnard, hake, etc.). In all cultivations, no significant differences were found on cell viability when the microorganism grew on commercial or alternative media. In relation to the biomass production, the growth of Phaeobacter sp. on waste media was commonly similar or a 20% lower than observed in the control cultures. For P. fluorescens, various peptones (skin peptones of pouting and blue whiting) showed even higher productive ability than commercial peptones. An initial economical evaluation revealed that low-cost media reduced until 120 times the cost of production of MPB.
Bioconversion of Fish Discards through the Production of Lactic Acid Bacteria and Metabolites: Sustainable Application of Fish Peptones in Nutritive Fermentation Media
In the current work, we study the capacity of 30 peptones obtained by enzyme proteolysis of ten discarded fish species (hake, megrim, red scorpionfish, pouting, mackerel, gurnard, blue whiting, Atlantic horse mackerel, grenadier, and boarfish) to support the growth and metabolite production of four lactic acid bacteria (LAB) of probiotic and technological importance. Batch fermentations of Lactobacillus plantarum, L. brevis, L. casei, and Leuconostoc mesenteroides in most of the media formulated with fish peptones (87% of the cases) led to similar growths (quantified as dry-weight biomass and viable cells) and metabolites (mainly lactic acid) than in commercial control broth (MRS). Comparisons among cultures were performed by means of the parameters obtained from the mathematical fittings of experimental kinetics to the logistic equation. Modelling among experimental and predicted data from each bioproduction was generally accurate. A simple economic assessment demonstrated the profitability achieved when MRS is substituted by media formulated with fish discards: a 3–4-fold reduction of costs for LAB biomass, viable cells formation, and lactic and acetic acid production. Thus, these fish peptones are promising alternatives to the expensive commercial peptones as well as a possible solution to valorize discarded fish biomasses and by-products.
Nutritional Profiling and the Value of Processing By-Products from Gilthead Sea Bream (Sparus aurata)
Fish processing industries generate a large volume of discards. In order to fulfil with the principles of a sustainable circular economy, it is necessary to maintain aquaculture by-products in the food chain through the production of high-value biomolecules that can be used as novel ingredients. In this study, we try to give value to the gilthead sea bream by-products, evaluating the composition and the nutritional value of the muscle and six discards commonly obtained from the fish processing industry (fishbone, gills, guts, heads, liver, and skin), which represent ≈ 61% of the whole fish. Significant differences were detected among muscle and by-products for fatty acid and amino acid profile, as well as mineral content. The discards studied were rich in protein (10%–25%), showing skin and fishbone to have the highest contents. The amino acid profile reflected the high quality of its protein, with 41%–49% being essential amino acids—lysine, leucine, and arginine were the most abundant amino acids. Guts, liver, and skin were the fattiest by-products (25%–35%). High contents of polyunsaturated fatty acids (PUFAs) (31%–34%), n-3 fatty acids (12%–14%), and eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) (6%–8%) characterized these discards. The head displayed by far the highest ash content (9.14%), which was reflected in the mineral content, especially in calcium and phosphorous. These results revealed that gilthead sea bream by-products can be used as source of value-added products such as protein, oils, and mineral supplements.
Collagen Extraction Optimization from the Skin of the Small-Spotted Catshark (S. canicula) by Response Surface Methodology
The small-spotted catshark is one of the most abundant elasmobranchs in the Northeastern Atlantic Ocean. Although its landings are devoted for human consumption, in general this species has low commercial value with high discard rates, reaching 100% in some European fisheries. The reduction of post-harvest losses (discards and by-products) by promotion of a full use of fishing captures is one of the main goals of EU fishing policies. As marine collagens are increasingly used as alternatives to mammalian collagens for cosmetics, tissue engineering, etc., fish skins represent an excellent and abundant source for obtaining this biomolecule. The aim of this study was to analyze the influence of chemical treatment concentration, temperature and time on the extractability of skin collagen from this species. Two experimental designs, one for each of the main stages of the process, were performed by means of Response Surface Methodology (RSM). The combined effect of NaOH concentration, time and temperature on the amount of collagen recovered in the first stage of the collagen extraction procedure was studied. Then, skins treated under optimal NaOH conditions were subjected to a second experimental design, to study the combined effect of AcOH concentration, time and temperature on the collagen recovery by means of yield, amino acid content and SDS-PAGE characterization. Values of independent variables maximizing collagen recovery were 4 °C, 2 h and 0.1 M NaOH (pre-treatment) and 25 °C, 34 h and 1 M AcOH (collagen extraction).
Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation
The objective of this report was to investigate the isolation and recovery of different biocompounds and bioproducts from wastes (skins and heads) that were obtained from five species discarded by fishing fleets (megrim, hake, boarfish, grenadier, and Atlantic horse mackerel). Based on chemical treatments, enzymatic hydrolysis, and bacterial fermentation, we have isolated and produced gelatinous solutions, oils that are rich in omega-3, fish protein hydrolysates (FPHs) with antioxidant and antihypertensive activities, and peptones. FPHs showed degrees of hydrolysis higher than 13%, with soluble protein concentrations greater than 27 g/L and in vitro digestibilities superior to 90%. Additionally, amino acids compositions were always valuable and bioactivities were, in some cases, remarkable. Peptones that were obtained from FPHs of skin and the heads were demonstrated to be a viable alternative to expensive commercial ones indicated for the production of biomass, lactic acid, and pediocin SA-1 from Pediococcus acidilactici.
Recent Applications of Biopolymers Derived from Fish Industry Waste in Food Packaging
Fish waste is attracting growing interest as a new raw material for biopolymer production in different application fields, mainly in food packaging, with significant economic and environmental advantages. This review paper summarizes the recent advances in the valorization of fish waste for the preparation of biopolymers for food packaging applications. The issues related to fishery industry waste and fish by-catch and the potential for re-using these by-products in a circular economy approach have been presented in detail. Then, all the biopolymer typologies derived from fish waste with potential applications in food packaging, such as muscle proteins, collagen, gelatin, chitin/chitosan, have been described. For each of them, the recent applications in food packaging, in the last five years, have been overviewed with an emphasis on smart packaging applications. Despite the huge industrial potential of fish industry by-products, most of the reviewed applications are still at lab-scale. Therefore, the technological challenges for a reliable exploitation and recovery of several potentially valuable molecules and the strategies to improve the barrier, mechanical and thermal performance of each kind of biopolymer have been analyzed.
Production of Fish Protein Hydrolysates from Scyliorhinus canicula Discards with Antihypertensive and Antioxidant Activities by Enzymatic Hydrolysis and Mathematical Optimization Using Response Surface Methodology
Fish discards are of major concern in new EU policies. Alternatives for the management of the new biomass that has to be landed is compulsory. The production of bioactive compounds from fish protein hydrolysates (FPH) has been explored in recent years. However, the viability of Scyliorhinus canicula discards, which might account for up to 90–100% of captures in mixed trawler, gillnet, and longline industrial fisheries, to produce FPH from the muscle with bioactivities has still not been studied in terms of the optimization of the experimental conditions to enhance its production. The effect of pH and temperature on the hydrolysis of the S. canicula muscle was mediated by three commercial proteases using response surface methodology. Temperatures of 64.6 °C and 60.8 °C and pHs of 9.40 and 8.90 were established as the best hydrolysis conditions for Alcalase and Esperase, respectively. Optimization of the best conditions for the maximization of antihypertensive and antioxidant activities was performed. Higher Angiotensin-converting enzyme (ACE) activity was found with Esperase. The pH optimum and temperature optimum for antioxidants were 55 °C/pH8.0 for ABTS/DPPH-Esperase, 63.1 °C/pH9.0 for DPPH-Alcalase, and 55 °C/pH9.0 for ABTS-Alcalase. No hydrolysis was detected when using Protamex.
Omega-3-Rich Oils from Marine Side Streams and Their Potential Application in Food
Rapid population growth and increasing food demand have impacts on the environment due to the generation of residues, which could be managed using sustainable solutions such as the circular economy strategy (waste generated during food processing must be kept within the food chain). Reusing discarded fish remains is part of this management strategy, since they contain high-value ingredients and bioactive compounds that can be used for the development of nutraceuticals and functional foods. Fish side streams such as the head, liver, or skin or the cephalothorax, carapace, and tail from shellfish are important sources of oils rich in omega-3. In order to resolve the disadvantages associated with conventional methods, novel extraction techniques are being optimized to improve the quality and the oxidative stability of these high-value oils. Positive effects on cardiovascular and vision health, diabetes, cancer, anti-inflammatory and neuroprotective properties, and immune system improvement are among their recognized properties. Their incorporation into different model systems could contribute to the development of functional foods, with market benefits for consumers. These products improve the nutritional needs of specific population groups in a scenario where noncommunicable diseases and pandemic crises are responsible for several deaths worldwide.
High-grading and over-quota discarding in mixed fisheries
High-grading is the decision by fishers to discard fish of low value that allows them to land more valuable fish. A literature review showed high-grading is reported in commercial and non-commercial fisheries around the world, although the number of observations is small. High-grading occurs in fisheries that are restricted to land their total catch due to management, market or physical constraints. Using the mixed flatfish fishery as a model system, a dynamic state variable model simulation showed that high-grading of certain grades occurs throughout the year when their ex-vessel price is low. High-grading increases with the degree of quota restriction, while the level of over-quota discarding is unrelated to the quota level. The size composition of the high-graded catch differs from the landed catch. Due to the differences in the seasonal variation in size specific ex-vessel price, the effect of quota restrictions on the size composition of the discarded catch is non-linear. High-grading is difficult to detect for the fishery inspection as it occurs on-board during the short period when the catch is processed. We conclude that high-grading is under-reported in fish stocks managed by restrictive quota, undermining the quality of stock assessments and sustainable management of exploited fish stocks.
Applying global best practices for estimating unreported catches in Norwegian fisheries under a discard ban
In addition to their role as a fisheries management tool, discard bans can be effective in improving knowledge of total catches via the requirement to land and report all catches. This shifts the focus to understanding the scale of unreported catches in fisheries, rather than only on discards. However, the presence of a discard ban can cause problems with estimation process, as it involves the observation of illegal activities, and the complex sources of unreported catches require a different approach to estimation. The Norwegian discard ban was introduced in 1987 as part of a wider suite of regulatory measures to improve exploitation patterns in commercial fisheries, but a framework for the regular estimation of unreported catches has yet to be established and operationalised. Here, we aim to identify global best practices for estimating unreported catches under a discard ban and assess their applicability to Norwegian fisheries. We approach this in three steps: (1) defining the scope of an estimation, (2) data collection, and (3) the actual procedure for estimation. We discuss how each step can affect the quality of an estimate with regards to accuracy, precision, practical limitations and whether the estimate is fit for purpose. Finally, we provide a list of recommendations for future studies and identify key knowledge gaps and limitations regarding their application to Norwegian fisheries.