Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
7,227 result(s) for "fitness costs"
Sort by:
The hidden life of integrative and conjugative elements
Abstract Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE–host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE ‘fitness’). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells. Integrative and conjugative elements impose a bistable life style on their host, enabling a small differentiated subpopulation of cells to transmit the element.
Lethal, Sub-Lethal and Trans-Generational Effects of Chlorantraniliprole on Biological Parameters, Demographic Traits, and Fitness Costs of Spodoptera frugiperda (Lepidoptera: Noctuidae)
Fall armyworm [Spodoptera frugiperda (J. E. Smith, 1797)] was first reported in the Americas, then spread to all the continents of the world. Chemical insecticides are frequently employed in managing fall armyworms. These insecticides have various modes of actions and target sites to kill the insects. Chlorantraniliprole is a selective insecticide with a novel mode of action and is used against Lepidopteran, Coleopteran, Isopteran, and Dipteran pests. This study determined chlorantraniliprole’s lethal, sub-lethal, and trans-generational effects on two consecutive generations (F0, F1, and F2) of the fall armyworm. Bioassays revealed that chlorantraniliprole exhibited higher toxicity against fall armyworms with a LC50 of 2.781 mg/L after 48 h of exposure. Significant differences were noted in the biological parameters of fall armyworms in all generations. Sub-lethal concentrations of chlorantraniliprole showed prolonged larval and adult durations. The parameters related to the fitness cost in F0 and F1 generations showed non-significant differences. In contrast, the F2 generation showed lower fecundity at lethal (71 eggs/female) and sub-lethal (94 eggs/female) doses of chlorantraniliprole compared to the control (127.5–129.3 eggs/female). Age-stage specific survival rate (Sxj), life expectancy (Exj) and reproductive rate (Vxj) significantly differed among insecticide-treated groups in all generations compared to the control. A comparison of treated and untreated insects over generations indicated substantial differences in demographic parameters such as net reproduction rate (R0), intrinsic rate of increase (r), and mean generation time (T). Several biological and demographic parameters were shown to be negatively impacted by chlorantraniliprole. We conclude that chlorantraniliprole may be utilized to manage fall armyworms with lesser risks.
Fitness Costs Associated with Evolved Herbicide Resistance Alleles in Plants
Predictions based on evolutionary theory suggest that the adaptive value of evolved herbicide resistance alleles may be compromised by the existence of fitness costs. There have been many studies quantifying the fitness costs associated with novel herbicide resistance alleles, reflecting the importance of fitness costs in determining the evolutionary dynamics of resistance. However, many of these studies have incorrectly defined resistance or used inappropriate plant material and methods to measure fitness. This review has two major objectives. First, to propose a methodological framework that establishes experimental criteria to unequivocally evaluate fitness costs. Second, to present a comprehensive analysis of the literature on fitness costs associated with herbicide resistance alleles. This analysis reveals unquestionable evidence that some herbicide resistance alleles are associated with pleiotropic effects that result in plant fitness costs. Observed costs are evident from herbicide resistance-endowing amino acid substitutions in proteins involved in amino acid, fatty acid, auxin and cellulose biosynthesis, as well as enzymes involved in herbicide metabolism. However, these resistance fitness costs are not universal and their expression depends on particular plant alleles and mutations. The findings of this review are discussed within the context of the plant defence trade-off theory and herbicide resistance evolution.
Environmental factors influencing the development and spread of antibiotic resistance
Abstract Antibiotic resistance and its wider implications present us with a growing healthcare crisis. Recent research points to the environment as an important component for the transmission of resistant bacteria and in the emergence of resistant pathogens. However, a deeper understanding of the evolutionary and ecological processes that lead to clinical appearance of resistance genes is still lacking, as is knowledge of environmental dispersal barriers. This calls for better models of how resistance genes evolve, are mobilized, transferred and disseminated in the environment. Here, we attempt to define the ecological and evolutionary environmental factors that contribute to resistance development and transmission. Although mobilization of resistance genes likely occurs continuously, the great majority of such genetic events do not lead to the establishment of novel resistance factors in bacterial populations, unless there is a selection pressure for maintaining them or their fitness costs are negligible. To enable preventative measures it is therefore critical to investigate under what conditions and to what extent environmental selection for resistance takes place. In addition, understanding dispersal barriers is not only key to evaluate risks, but also to prevent resistant pathogens, as well as novel resistance genes, from reaching humans. This review defines which ecological and environmental factors are important for the development of antibiotic resistance in human pathogens, and suggests some possible mitigation strategies to delay and reduce increased resistance.
Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis
Microorganisms possess diverse mechanisms to regulate investment into individual cellular processes according to their environment. How these regulatory strategies reflect the inherent trade-off between the benefit and cost of resource investment remains largely unknown, particularly for many cellular functions that are not immediately related to growth. Here, we investigate regulation of motility and chemotaxis, one of the most complex and costly bacterial behaviors, as a function of bacterial growth rate. We show with experiment and theory that in poor nutritional conditions, Escherichia coli increases its investment in motility in proportion to the reproductive fitness advantage provided by the ability to follow nutrient gradients. Since this growth-rate dependent regulation of motility genes occurs even when nutrient gradients are absent, we hypothesize that it reflects an anticipatory preallocation of cellular resources. Notably, relative fitness benefit of chemotaxis could be observed not only in the presence of imposed gradients of secondary nutrients but also in initially homogeneous bacterial cultures, suggesting that bacteria can generate local gradients of carbon sources and excreted metabolites, and subsequently use chemotaxis to enhance the utilization of these compounds. This interplay between metabolite excretion and their chemotaxis-dependent reutilization is likely to play an important general role in microbial communities.
The genetic basis of the fitness costs of antimicrobial resistance: a meta‐analysis approach
The evolution of antibiotic resistance carries a fitness cost, expressed in terms of reduced competitive ability in the absence of antibiotics. This cost plays a key role in the dynamics of resistance by generating selection against resistance when bacteria encounter an antibiotic‐free environment. Previous work has shown that the cost of resistance is highly variable, but the underlying causes remain poorly understood. Here, we use a meta‐analysis of the published resistance literature to determine how the genetic basis of resistance influences its cost. We find that on average chromosomal resistance mutations carry a larger cost than acquiring resistance via a plasmid. This may explain why resistance often evolves by plasmid acquisition. Second, we find that the cost of plasmid acquisition increases with the breadth of its resistance range. This suggests a potentially important limit on the evolution of extensive multidrug resistance via plasmids. We also find that epistasis can significantly alter the cost of mutational resistance. Overall, our study shows that the cost of antimicrobial resistance can be partially explained by its genetic basis. It also highlights both the danger associated with plasmidborne resistance and the need to understand why resistance plasmids carry a relatively low cost.
Enhanced activity of carbohydrate- and lipid-metabolizing enzymes in insecticide-resistant populations of the maize weevil, Sitophilus zeamais
Insecticide resistance is frequently associated with fitness disadvantages in the absence of insecticides. However, intense past selection with insecticides may allow the evolution of fitness modifier alleles that mitigate the cost of insecticide resistance and their consequent fitness disadvantages. Populations of Sitophilus zeamais with different levels of susceptibility to insecticides show differences in the accumulation and mobilization of energy reserves. These differences may allow S. zeamais to better withstand toxic compounds without reducing the beetles' reproductive fitness. Enzymatic assays with carbohydrate- and lipid-metabolizing enzymes were, therefore, carried out to test this hypothesis. Activity levels of trehalase, glycogen phosphorylase, lipase, glycosidase and amylase were determined in two insecticide-resistant populations showing (resistant cost) or not showing (resistant no-cost) associated fitness cost, and in an insecticide-susceptible population. Respirometry bioassays were also carried out with these weevil populations. The resistant no-cost population showed significantly higher body mass and respiration rate than the other two populations, which were similar. No significant differences in glycogen phosphorylase and glycosidase were observed among the populations. Among the enzymes studied, trehalase and lipase showed higher activity in the resistant cost population. The results obtained in the assays with amylase also indicate significant differences in activity among the populations, but with higher activity in the resistant no-cost population. The inverse activity trends of lipases and amylases in both resistant populations, one showing fitness disadvantage without insecticide exposure and the other not showing it, may underlay the mitigation of insecticide resistance physiological costs observed in the resistant no-cost population. The higher amylase activity observed in the resistant no-cost population may favor energy storage, preventing potential trade-offs between insecticide resistance mechanisms and basic physiological processes in this population, unlike what seems to take place in the resistant cost population.
Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant Pseudomonas aeruginosa Mutants Overexpressing Efflux Pumps
It is generally assumed that the acquisition of antibiotic resistance is associated with a fitness cost. We have shown that overexpression of the MexEF-OprN efflux pump does not decrease the fitness of a resistant Pseudomonas aeruginosa strain compared to its wild-type counterpart. This lack of fitness cost was associated with a metabolic rewiring that includes increased expression of the anaerobic nitrate respiratory chain when cells are growing under fully aerobic conditions. It was not clear whether this metabolic compensation was exclusive to strains overexpressing MexEF-OprN or if it extended to other resistant strains that overexpress similar systems. To answer this question, we studied a set of P. aeruginosa mutants that independently overexpress the MexAB-OprM, MexCD-OprJ, or MexXY efflux pumps. We observed increased expression of the anaerobic nitrate respiratory chain in all cases, with a concomitant increase in NO 3 consumption and NO production. These efflux pumps are proton/substrate antiporters, and their overexpression may lead to intracellular H + accumulation, which may in turn offset the pH homeostasis. Indeed, all studied mutants showed a decrease in intracellular pH under anaerobic conditions. The fastest way to eliminate the excess of protons is by increasing oxygen consumption, a feature also displayed by all analyzed mutants. Taken together, our results support metabolic rewiring as a general mechanism to avoid the fitness costs derived from overexpression of P. aeruginosa multidrug efflux pumps. The development of drugs that block this metabolic “reaccommodation” might help in reducing the persistence and spread of antibiotic resistance elements among bacterial populations. IMPORTANCE It is widely accepted that the acquisition of resistance confers a fitness cost in such a way that in the absence of antibiotics, resistant populations will be outcompeted by susceptible ones. Based on this assumption, antibiotic cycling regimes have been proposed in the belief that they will reduce the persistence and spread of resistance among bacterial pathogens. Unfortunately, trials testing this possibility have frequently failed, indicating that resistant microorganisms are not always outcompeted by susceptible ones. Indeed, some mutations do not result in a fitness cost, and in case they do, the cost may be compensated for by a secondary mutation. Here we describe an alternative nonmutational mechanism for compensating for fitness costs, which consists of the metabolic rewiring of resistant mutants. Deciphering the mechanisms involved in the compensation of fitness costs of antibiotic-resistant mutants may help in the development of drugs that will reduce the persistence of resistance by increasing said costs. It is widely accepted that the acquisition of resistance confers a fitness cost in such a way that in the absence of antibiotics, resistant populations will be outcompeted by susceptible ones. Based on this assumption, antibiotic cycling regimes have been proposed in the belief that they will reduce the persistence and spread of resistance among bacterial pathogens. Unfortunately, trials testing this possibility have frequently failed, indicating that resistant microorganisms are not always outcompeted by susceptible ones. Indeed, some mutations do not result in a fitness cost, and in case they do, the cost may be compensated for by a secondary mutation. Here we describe an alternative nonmutational mechanism for compensating for fitness costs, which consists of the metabolic rewiring of resistant mutants. Deciphering the mechanisms involved in the compensation of fitness costs of antibiotic-resistant mutants may help in the development of drugs that will reduce the persistence of resistance by increasing said costs.
Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus
CRISPR-Cas is a form of adaptive sequence-specific immunity in microbes. This system offers unique opportunities for the study of coevolution between bacteria and their viral pathogens, bacteriophages. A full understanding of the coevolutionary dynamics of CRISPR-Cas requires knowing the magnitude of the cost of resisting infection. Here, using the gram-positive bacterium Streptococcus thermophilus and its associated virulent phage 2972, a well-established model system harbouring at least two type If functional CRISPR-Cas systems, we obtained different fitness measures based on growth assays in isolation or in pairwise competition. We measured the fitness cost associated with different components of this adaptive immune system: the cost of Cas protein expression, the constitutive cost of increasing immune memory through additional spacers, and the conditional costs of immunity during phage exposure. We found that Cas protein expression is particularly costly, as Cas-deficient mutants achieved higher competitive abilities than the wild-type strain with functional Cas proteins. Increasing immune memory by acquiring up to four phage-derived spacers was not associated with fitness costs. In addition, the activation of the CRLSPR-Cas system during phage exposure induces significant but small fitness costs. Together these results suggest that the costs of the CRISPR-Cas system arise mainly due to the maintenance of the defence system. We discuss the implications of these results for the evolution of CRISPR-Cas-mediated immunity.
miR396-OsGRFs Module Balances Growth and Rice Blast Disease-Resistance
Fitness cost is a common phenomenon in rice blast disease-resistance breeding. MiR396 is a highly conserved microRNA (miRNA) family targeting Growth Regulating Factor ( OsGRF ) genes. Mutation at the target site of miR396 in certain OsGRF gene or blocking miR396 expression leads to increased grain yield. Here we demonstrated that fitness cost can be trade-off in miR396- OsGRF s module via balancing growth and immunity against the blast fungus. The accumulation of miR396 isoforms was significantly increased in a susceptible accession, but fluctuated in a resistant accession upon infection of Magnaporthe oryzae . The transgenic lines over-expressing different miR396 isoforms were highly susceptible to M. oryzae . In contrast, overexpressing target mimicry of miR396 to block its function led to enhanced resistance to M. oryzae in addition to improved yield traits. Moreover, transgenic plants overexpressing OsGRF6 , OsGRF7 , OsGRF8 , and OsGRF9 exhibited enhanced resistance to M. oryzae , but showed different alteration of growth. While overexpression of OsGRF7 led to defects in growth, overexpression of OsGRF6 , OsGRF8 , and OsGRF9 resulted in better or no significant change of yield traits. Collectively, our results indicate that miR396 negatively regulates rice blast disease- resistance via suppressing multiple OsGRF s, which in turn differentially control growth and yield. Therefore, miR396- OsGRFs could be a potential module to demolish fitness cost in rice blast disease-resistance breeding.