Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,607 result(s) for "flight speeds"
Sort by:
Load and Wind Aware Routing of Delivery Drones
Delivery drones have been attracting attention as one of the promising technologies to deliver packages. Several research studies on routing problems specifically for drone delivery scenarios have extended Vehicle Routing Problems (VRPs). Most existing VRPs are based on Traveling Salesman Problems (TSPs) for minimizing the overall distance. On the other hand, VRPs for drone delivery have been aware of energy consumption due to the consideration of battery capacity. Despite hovering motions with loading packages accounting for a large portion of energy consumption since delivery drones need to hover with several packages, little research has been conducted on drone routing problems that aim at the minimization of overall flight times. In addition, flight time is strongly influenced by windy conditions such as headwinds and tailwinds. In this paper, we propose a VRP for drone delivery in which flight time is dependent on the weight of packages in a windy environment, called Flight Speed-aware Vehicle Routing Problem with Load and Wind (FSVRPLW). In this paper, flight speed changes depending on the load and wind. Specifically, a heavier package slows down flight speeds and a lighter package speeds up flight speeds. In addition, a headwind slows down flight speeds and a tailwind speed up flight speeds. We mathematically derived the problem and developed a dynamic programming algorithm to solve the problem. In the experiments, we investigate how much impact both the weight of packages and the wind have on the flight time. The experimental results indicate that taking loads and wind into account is very effective in reducing flight times. Moreover, the results of comparing the effects of load and wind indicate that flight time largely depends on the weight of packages.
An Integer Programming Based Approach to Delivery Drone Routing under Load-Dependent Flight Speed
Delivery drones have been attracting attention as a means of solving recent logistics issues, and many companies are focusing on their practical applications. Many research studies on delivery drones have been active for several decades. Among them, extended routing problems for drones have been proposed based on the Traveling Salesman Problem (TSP), which is used, for example, in truck vehicle routing problems. In parcel delivery by drones, additional constraints such as battery capacity, payload, and weather conditions need to be considered. This study addresses the routing problem for delivery drones. Most existing studies assume that the drone’s flight speed is constant regardless of the load. On the other hand, some studies assume that the flight speed varies with the load. This routing problem is called the Flight Speed-Aware Traveling Salesman Problem (FSTSP). The complexity of the drone flight speed function in this problem makes it difficult to solve the routing problem using general-purpose mathematical optimization solvers. In this study, the routing problem is reduced to an integer programming problem by using linear and quadratic approximations of the flight speed function. This enables us to solve the problem using general-purpose mathematical optimization solvers. In experiments, we compared the existing and proposed methods in terms of solving time and total flight time. The experimental results show that the proposed method with multiple threads has a shorter solving time than the state-of-the-art method when the number of customers is 17 or more. In terms of total flight time, the proposed methods deteriorate by an average of 0.4% for integer quadratic programming and an average of 1.9% for integer cubic programming compared to state-of-the-art methods. These experimental results show that the quadratic and cubic approximations of the problem have almost no degradation of the solution.
Differences in Speed and Duration of Bird Migration between Spring and Autumn
It has been suggested that birds migrate faster in spring than in autumn because of competition for arrival order at breeding grounds and environmental factors such as increased daylight. Investigating spring and autumn migration performances is important for understanding ecological and evolutionary constraints in the timing and speed of migration. We compiled measurements from tracking studies and found a consistent predominance of cases showing higher speeds and shorter durations during spring compared to autumn, in terms of flight speeds (airspeed, ground speed, daily travel speed), stopover duration, and total speed and duration of migration. Seasonal differences in flight speeds were generally smaller than those in stopover durations and total speed/duration of migration, indicating that rates of foraging and fuel deposition were more important than flight speed in accounting for differences in overall migration performance. Still, the seasonal differences in flight speeds provide important support for time selection in spring migration.
Aircraft Propellers—Is There a Future?
The race for speed ruled the early Jet Age on aviation. Aircraft manufacturers chased faster and faster planes in a fight for pride and capability. In the early 1970s, dreams were that the future would be supersonic, but fuel economy and unacceptable noise levels made that era never happen. After the 1973 oil crisis, the paradigm changed. The average cruise speed on newly developed aircraft started to decrease in exchange for improvements in many other performance parameters. At the same pace, the airliner’s power-plants are evolving to look more like a ducted turboprop, and less like a pure jet engine as the pursuit for the higher bypass ratios continues. However, since the birth of jet aircraft, the propeller-driven plane has lost its dominant place, associated with the idea that going back to propeller-driven airplanes, and what it represents in terms of modernity and security, has started a propeller avoidance phenomenon with travelers and thus with airlines. Today, even with the modest research effort since the 1980s, advanced propellers are getting efficiencies closer to jet-powered engines at their contemporary typical cruise speeds. This paper gives a brief overview of the performance trends in aviation since the last century. Comparison examples between aircraft designed on different paradigms are presented. The use of propellers as a reborn propulsive device is discussed.
Evaluating Thermal Infrared Drone Flight Parameters on Spider Monkey Detection in Tropical Forests
Geoffroy’s spider monkeys, an endangered, fast-moving arboreal primate species with a large home range and a high degree of fission–fusion dynamics, are challenging to survey in their natural habitats. Our objective was to evaluate how different flight parameters affect the detectability of spider monkeys in videos recorded by a drone equipped with a thermal infrared camera and examine the level of agreement between coders. We used generalized linear mixed models to evaluate the impact of flight speed (2, 4, 6 m/s), flight height (40, 50 m above ground level), and camera angle (−45°, −90°) on spider monkey counts in a closed-canopy forest in the Yucatan Peninsula, Mexico. Our results indicate that none of the three flight parameters affected the number of detected spider monkeys. Agreement between coders was “substantial” (Fleiss’ kappa coefficient = 0.61–0.80) in most cases for high thermal-contrast zones. Our study contributes to the development of standardized flight protocols, which are essential to obtain accurate data on the presence and abundance of wild populations. Based on our results, we recommend performing drone surveys for spider monkeys and other medium-sized arboreal mammals with a small commercial drone at a 4 m/s speed, 15 m above canopy height, and with a −90° camera angle. However, these recommendations may vary depending on the size and noise level produced by the drone model.
The scaling of eye size with body mass in birds
We developed a simple method that uses skulls to estimate the diameter, and hence the mass, of birds' eyes. Allometric analysis demonstrated that, within five orders (parrots, pigeons, petrels, raptors and owls) and across 104 families of flying birds, eye mass is proportional to (body mass)0.68 over a range of body masses (6 g to 11.3 kg). As expected from their habits and visual ecology, raptors and owls have enlarged eyes, with masses 1.4 and 2.2 times greater than average birds of the same weight. Taking existing relationships for flight speed on body mass, we find that resolution increases close to (flight speed)1.333. Consequently, large birds resolve objects at a longer time to contact than small birds. Eye radius and skull size co-vary in strict proportion, suggesting common physiological, aerodynamic and mechanical constraints. Because eye mass scales close to brain mass, metabolic rate and information processing could also be limiting, but the precise factors determining the scaling of eye to body have not been identified.
Optimization of Operational Parameters of Plant Protection UAV
The operational parameters of plant protection unmanned aerial vehicles (UAVs) significantly impact spraying effectiveness, but the underlying mechanism remains unclear. This paper conducted a full factorial experiment with varying flight speeds, heights, and nozzle flow rates to collect parameter space data. Using the Kriging surrogate model, we characterized this parameter space and subsequently optimized the average deposition rate and coefficient of variation by employing a variable crossover (mutation) probability multi-objective genetic algorithm. In the obtained Pareto front, the average sedimentation rate is no less than 46%, with a maximum of 56.08%, and the CV coefficient is no more than 13.91%, with a minimum of only 8.42%. These optimized parameters enhance both the average deposition rate and spraying uniformity compared to experimental data. By employing these optimized parameters in practical applications, a balance between the maximum average deposition rate and minimum coefficient of variation can be achieved during UAV spraying, thereby reducing pesticide usage, promoting sustainable agriculture, and mitigating instances of missed spraying and re-spraying.
Eoldist , a Web Application for Estimating Cautionary Detection Distance of Birds by Automatic Detection Systems to Reduce Collisions With Wind Turbines
The installation of automatic detection systems (ADSs) on operating wind energy facilities is a mitigation measure to reduce bird collisions. The effectiveness of an ADS depends on a combination of parameters, including the detection distance of the bird, its flight speed, and the time to complete the chosen action (e.g., turbine shutdown). We created a web application, Eoldist , to calculate cautionary detection distances required by an ADS, using bird flight speed and turbine shutdown time as input parameters. We compiled a database of the flight speeds of 168 Western Palearctic birds from a review of scientific literature supplemented by an analysis of unpublished GPS‐tracking datasets. To estimate turbine shutdown time, we conducted 137 field trials of experimental shutdown at seven wind farms and found that the duration to reach residual rotor speeds of 3 or 2 rotations per minute (rpm) was respectively 32.2 or 38.8 s on average. Based on this data, Eoldist allows the user to select a species from the database, wind turbine characteristics, and a residual rotor speed (3 or 2 rpm); it then calculates the time to reach the selected threshold and provides a distribution curve for the cautionary detection distance needed to prevent collision. This article includes examples of cautionary detection distances required for several species to demonstrate the sensitivity of key input parameters. Eoldist is freely available and should help the wind energy industry, ADS suppliers, and environmental agencies to define requirements for ADS bird detection that are compatible with the biology of the target species.
Measurement of inkjet droplet speed using interference fringe by diffracted light
Inkjet printers are key technologies in manufacturing organic light-emitting diodes and quantum dot light-emitting diode panels, but precise measurement and control of inkjet droplets remains challenging. The international standard, IEC 62899-302-1, uses shadow image-based measurement with high magnification microscopes to observe picoliter-sized droplets. However, high magnification lens results in a shallow depth of field or narrow optimal measurement area, causing the blurring image if the droplet does not pass through the optimal measurement area. To solve this, we propose using the interference image-based measurement with interference fringe patterns by inkjet droplets as a tool to measure the flight speed of droplets. The interference fringe patterns can be obtained simply passing the droplet through within the light beam path, providing approximately 1000× wider measurement area compared to the shadow image-based measurement, making it practical to use in the industry. The flight speed of droplets analyzed with the interference image-based measurement at various frequencies and amplitudes of the inkjet driving voltage were compared with the shadow image-based measurement. The interference image-based measurement showed a coefficient of variation of less than 3%, showing higher repeatability than the shadow image-based measurements.
Investigation of a Tube-Launched Unmanned Aerial Vehicle with a Variable-Sweep Wing
Foldable wings are designed for tube-launched unmanned aerial vehicles (UAVs), aiming to improve portability and meet launch platform requirements. However, conventional tube-launched UAVs cannot operate across the wide speed ranges required for the performance of multiple missions, due to the fixed configuration of their wings after launch. This study therefore proposes a tube-launched UAV which can change wing-sweep angle to expand the flight speed range and enhance the UAV’s agility. A computational aerodynamics method is employed to assess the transient aerodynamic performance of the UAV during the sweep morphing process. The simulation results indicate that the transient aerodynamic forces generate a dynamic hysteresis loop around the quasi-steady data. The lift and drag coefficients exhibit maximum relative deviations of 18.5% and 12.7% from the quasi-steady data for the sweep morphing period of 0.5 s. The hysteresis effect of the flow structure, rather than the additional velocity resulting from wing-sweep morphing, is the major contributor to the aerodynamic hysteresis loop. Compared to the conventional tube-launched UAVs, the proposed tube-launched UAV with a variable-sweep wing shows a wider flight speed range, from 22.59 to 90.12 m/s, and achieves an 82.84% increase in loitering speed. To verify the effectiveness of the wing-sweeping concept, a prototype was developed, and a flight test was carried out. The test data obtained from flight control system agree well with the simulation data, which demonstrates the feasibility and effectiveness of the variable-sweep wing in widening the speed range for tube-launched UAVs. This work can provide a reference for the design of tube-launched UAVs for wide speed range flight.