Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
133 result(s) for "floating foundation"
Sort by:
An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions
This study presents a new concept design combining multiple megawatt (MW) vertical-axis wind turbines (VAWTs) and a solar array with a floating steel fish-farming cage. This combined wind–solar–aquaculture (WSA) system is intended to utilize the ocean space and water resources more effectively and more economically, while greatly shortening the payback period of investment in offshore power generation. The details of this WSA design are described, showing that a square-shaped fishing cage serves as a floating foundation for the 7600 m2 solar array and four multi MW VAWTs. The WAMIT program based on potential-flow theory is employed to obtain the WSA’s motion response amplitude operators (RAOs) in sinusoidal waves of varying periods. The motion RAOs indicated that the proposed concept possesses better hydrodynamic seakeeping performances than its OC3Hywind spar and OC4DeepCwind semi-submersible counterparts. A potential site located in the northwest South China Sea is selected to deploy the WSA. Its feasibility is then examined in terms of the hydrodynamic motions and structural dynamic response driven by wind, waves, and current. Fully coupled time-domain simulations are carried out for 50-year survival conditions. The whole structure exhibits outstanding performance for its small motions in random wind and seas. Moreover, under these survival conditions, the top accelerations and tower base stresses of the VAWTs and mooring line tensions readily meet the design requirements. Technically, the WSA has strong competitiveness and wide prospects in the offshore industry for both power exploitation and marine aquaculture in intermediate and deep waters.
Study on Mooring Design of 15 MW Floating Wind Turbines in South China Sea
Wind turbines and floating platform upsizing are major trends in the current offshore wind development. However, harsh environmental conditions increase the risk of anchor dragging and mooring failure when deploying large offshore floating wind turbines. Therefore, it is necessary to design a mooring system for the specific deployment site. This study aims to perform the mooring system design of a floating offshore wind turbine (FOWT) operated in the South China Sea, which is a combination of the IEA 15 MW wind turbine and UMaine VolturnUS-S floating platform. Hydrodynamic coefficients were calculated based on the potential flow theory, considering the environmental loads in the South China Sea. Additionally, the hydrodynamic coefficients were imported into AQWA to calculate the time-domain mooring tension. The mooring design parameters, such as mooring line length, nominal sizes, and anchor point, were determined using the criterion of anchor uplift, maximum breaking strength, and fatigue life, respectively. The design criterion required that the anchor uplift is not more than the allowable value, the long-term breaking limit of mooring with a 100-year return period should be less than the maximum breaking limit, and the fatigue damage accumulation in 50 years should be safe. The mooring design procedure provides a reference for mooring system design and safe operation of large floating wind turbines in the South China Sea.
Overall Design and Performance Analysis of the Semi-Submersible Platform for a 10 MW Vertical-Axis Wind Turbine
This study presents a novel semi-submersible platform design for 10 MW vertical-axis wind turbines (VAWTs), specifically engineered to address the compounded challenges of China’s intermediate-depth (40 m), typhoon-prone maritime environment. Unlike conventional horizontal-axis configurations, VAWTs impose unique demands due to omnidirectional wind reception, high aerodynamic load fluctuations, and substantial self-weight—factors exacerbated by short installation windows and complex hydrodynamic interactions. Through systematic scheme demonstration, we establish the optimal four-column configuration, resolving critical limitations of existing concepts in terms of water depth adaptability, stability, and fabrication economics. The integrated design features central turbine mounting, hexagonal pontoons for enhanced damping, and optimized ballast distribution, achieving a 3400-tonne steel mass (29% reduction vs. benchmarks). Comprehensive performance validation confirms exceptional survivability under 50-year typhoon conditions (Hs = 4.42 m, Uw = 54 m/s), limiting platform tilt to 8.02° (53% of allowable) and nacelle accelerations to 0.10 g (17% of structural limit). Hydrodynamic analysis reveals heave/pitch natural periods > 20 s, avoiding wave resonance (Tp = 7.64 s), while comparative assessment demonstrates 33% lower pitch RAOs than leading horizontal-axis platforms. The design achieves unprecedented synergy of typhoon resilience, motion performance, and cost-efficiency—validated by 29% steel savings—providing a technically and economically viable solution for megawatt-scale VAWT deployment in challenging seas.
Stability and dynamic characteristics analysis of improved Spar-type wind power floating foundations
The stability and dynamic characteristics of the modified Spar-type offshore wind power floating foundation under the action of wind and wave coupling, based on the establishment of the dynamics model and the non-linear Mathieu equation, the boundary equations of the stable and unstable domains are solved based on Floquet theory, the Mathieu stability map is obtained, and the numerical simulation verifies the displacement between the stable and unstable domains with time. The results show that: in the same sea state background, When the ratio of heave motion frequency to pitch motion natural frequency is close to 2:1, even if the excitation amplitude is small, it will cause the pitch parameter excitation motion, increasing the system damping can reduce the unstable area, so as to effectively suppress that pitch parametrically-excited vibration of the float foundation. Under level 6 sea conditions, the maximum heave displacement of the floating foundation reaches 2.007 m and the maximum pitch angular displacement reaches 3.9534°, but it is still within the permissible range.
Conceptual Design and Hydrodynamic Performance of a Modular Hybrid Floating Foundation
The comprehensive utilization of offshore renewable energies is an effective way to solve the intermittency and variability of power supply. This paper aims to present a hybrid floating system (HFS) based on a modular buoyancy-distributed floating foundation (BDFF) that can be equipped with a horizontal-axis wind turbine, solar panels, and wave energy converters (WEC). A simplified test model with a Froude scale ratio of 1/10 is employed to perform the experiments in a deep-water basin to validate the numerical results computed from the code program ANSYS AQWA based on the potential flow theory. The Response Amplitude Operators (RAOs) under regular waves are compared to evaluate the hydrodynamic performance. There is a good agreement in the surge, pitch, and heave RAOs for experiments and the numerical simulation, with a maximum of 6.45 degrees per meter for the pitch motion. Furthermore, the mooring tensions in the time domain are analyzed under different wave conditions.The tension RAOs from simulations are slightly higher than those from measurements with a maximum value at the period of 3.416 s. The mooring line on the windward side has a more considerable mooring tension that is far less than the allowable tensile strength, especially under the wave height of 2 m and the wave period of 2.873 s. The influence of loaded weight representing solar panels is weak, and the impact of winds is acceptable, as the platform deviates 1.3 degrees from the equilibrium state under the test wind speed. Eventually, the effect of irregular waves on the HFS is presented with the critical parameters of mooring tension and pitch motion. The results show that the HFS has a good motion performance.
Balancing Resource Potential and Investment Costs in Offshore Wind Projects: Evidence from Northern Colombia
This study presents a comprehensive techno-economic assessment of offshore wind projects in the Colombian Caribbean, emphasizing the impact of site-specific parameters on development costs and performance. Wind resource conditions were evaluated in four coastal regions (La Guajira, Magdalena, Atlántico, and Bolívar) using hourly meteorological data from 2015 to 2024, adjusted to 100 m above ground level through logarithmic and power law wind profile models. The analysis included wind speed, bathymetry, distance to shore, distance to substation, foundation type, wind power density (WPD), and capacity factor (Cf). Based on these parameters, annual energy generation was estimated, and both capital expenditures (CAPEX) and operational expenditures (OPEX) were calculated, considering the technical and cost differences between fixed and floating foundations. Results show that La Guajira combines excellent wind conditions (WPD of 796 W/m2 and Cf of 61.5%) with favorable construction feasibility (bathymetry of −32 m), resulting in the lowest CAPEX among the studied regions. In contrast, Magdalena and Atlántico, with bathymetries exceeding 200 m, require floating foundations that more than double the investment costs. Bolívar presents an intermediate profile, offering solid wind potential and fixed foundation feasibility at a moderate cost. The findings confirm that offshore wind project viability depends not only on wind resource quality but also on physical site constraints, which directly influence the cost structure and energy yield. This integrated approach supports more accurate project prioritization and contributes to strategic planning for the sustainable deployment of offshore wind energy in Colombia.
Coupled Time-Domain Investigation on a Vertical Axis Wind Turbine Supported on a Floating Platform
The dynamic responses of a floating vertical axis wind turbine (VAWT) are assessed on the basis of an aero-hydro-mooring coupled model. The aerodynamic loads on the rotor are acquired with double-multiple stream tube method. First- and second-order wave loads are calculated on the basis of 3D potential theory. The mooring loads are simulated by catenary theory. The coupled model is established, and a numerical code is programmed to investigate the dynamic response of the semi-submersible VAWT. A model test is then conducted, and the numerical code is validated considering the hydrodynamic performance of the floating buoy. The responses of the floating VAWT are studied through the numerical simulation under the sea states of wind and regular/irregular waves. The effects of the second-order wave force on the motions are also investigated. Results show that the slow-drift responses in surge and pitch motions are significantly excited by the second-order wave forces. Furthermore, the effect of foundation motion on aerodynamic loads is examined. The normal and tangential forces of the blades demonstrate a slight increase due to the coupling effect between the buoy motion and the aerodynamic loads.
The Corrosion Resistance of Reinforced Lightweight Aggregate Concrete in Strong Brine Environments
Taiwan has used technology in reservoir sediments and industrial waste to produce high-performance lightweight aggregate (LWA). LWA can be used to manufacture lightweight aggregate concrete (LWAC) with structural strength ratings. At present, Taiwan’s offshore wind turbines are gradually developing and are moving from coastal areas to deep-sea areas. With this in mind, this study aimed to investigate the feasibility of applying LWAC with synthetic LWA from reservoir sediments to floating offshore wind turbine foundations. LWAC and normal-weight concretes (NWC) of different strengths were prepared, and their fresh, hardened, and durability properties were tested. In addition, reinforced concrete and steel sheets were immersed in a tank of high salinity seawater to examine their resistance to seawater-accelerated corrosion. The test results showed that the total passing charge of the two groups of concrete within six hours was less than 1000 coulombs. Both groups of concrete were classified as having “Very Low” chloride permeability. The average corrosion potential of most reinforced concrete specimens was found to be greater than −200 mV, which means that the corrosion probability of the steel bars was less than 10%. Furthermore, the use of coatings for seawater corrosion protection on steel sheets was not found to be as effective as reinforced concrete. This shows that the use of LWAC with synthetic LWA from reservoir sediments for the floating foundations of offshore wind turbines is feasible and has design flexibility.
Structural Parametric Optimization of the VolturnUS-S Semi-Submersible Foundation for a 15 MW Floating Offshore Wind Turbine
The full exploitation of offshore wind resources can essentially satisfy the massive energy demand. The realization and application of ultra-high-power offshore wind turbines are crucial to achieving full use of deep-sea wind energy and reducing the cost of wind power. For the VolturnUS-S semi-submersible floating foundation of a 15 megawatt (MW) offshore wind turbine, the effect of structural parameters on hydrodynamic performance was investigated by controlling the variables described in this paper. Accordingly, the floating foundation was optimized and coupled to the 15 MW offshore wind turbine. The dynamic performance of the integrated 15 MW offshore wind turbine was analyzed under different operating conditions, by applying the aero-hydro-servo-elastic coupled method. The results show that for a wave in a 0-degree direction, a 5% increase of column spacing will reduce the peak value of the pitch transfer function by 33.61%, and that a 5% decrease of the outer column diameter will further reduce the peak value by 26.27%. The standard deviation of the time-domain surge responses was reduced by 19.78% for the optimized offshore wind turbine, and the maximum value of the mooring line tension was reduced by 13.55% under normal operating conditions.
Innovative alternatives for repowering offshore wind farms
To deliver a climate neutral Europe by 2050 there is an unprecedented urgency to decarbonise Europe's electricity supply. The offshore wind industry is gearing up to this challenge with an increase in the rate at which high generating capacity offshore wind farms (OWFs) are deployed. Innovative repowering integrates early decommissioning and repowering of OWFs by using future large wind turbines (WTs, e.g. 20 MW WT). First-of-its-kind case studies have been presented to quantify the increased power generation capacity and the levelized cost of energy (LCOE) of repowering two OWFs with fixed and floating foundations. The repowering alternatives have been compared with the base case scenario (which involves decommissioning after the design life of 20 years) and the lifetime extension scenario (decommissioning in 25th year). The case studies show that a significant increase in energy output could be coupled with a reduction in the LCOE using the same OWF sites. The capacities of the OWF with fixed and floating foundations have been increased by 2.5 times (317 MW to 800 MW) and 2 times (400 MW to 800 MW) by repowering, respectively. Compared with developing an OWF on a new site, repowering has the potential to significantly accelerate the current installation capacity. Repowering has the potential to provide a competitive alternative to the lifetime extension of OWFs. Furthermore, the OWF with floating foundations has greater LCOE reductions compared with the OWFs with fixed foundations. This study has also provided evidence that enabling technologies and collaboration with other sectors would reduce the environmental impacts and costs of decommissioning of OWFs. This paper has suggested a way forward for research and development to overcome both technological and non-technological barriers to unlock the potential benefits of innovative alternatives of repowering OWFs.