Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
32,227 result(s) for "floodplains"
Sort by:
Floodplains : processes and management for ecosystem services
\"Floodplains provides an overview of floodplains and their management in temperate regions. It synthesizes decades of research on floodplain ecosystems, explaining hydrologic, geomorphic and ecological processes and how these processes can provide a range of benefits to society under appropriate management. Due to the widespread alteration of temperate floodplains, these benefits are often not realized. Drawing on the framework of reconciliation ecology, the authors explore how new concepts for floodplain ecosystem restoration and management can provide a broader range of benefits to society, ranging from healthy fish populations to flood-risk reduction. Case studies from California's Central Valley and elsewhere in temperate regions show how innovative management approaches are reshaping rivers and floodplains around the world.\"--Provided by publisher.
Floodplains
Floodplains provides an overview of floodplains and their management in temperate regions. It synthesizes decades of research on floodplain ecosystems, explaining hydrologic, geomorphic, and ecological processes and how under appropriate management these processes can provide benefits to society ranging from healthy fish populations to flood-risk reduction. Drawing on the framework of reconciliation ecology, the authors explore how new concepts for floodplain ecosystem restoration and management can increase these benefits. Additionally, they use case studies from California's Central Valley and other temperate regions to show how innovative management approaches are reshaping rivers and floodplains around the world.
Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions
Depressional wetlands of the extensive U.S. and Canadian Prairie Pothole Region afford numerous ecosystem processes that maintain healthy watershed functioning. However, these wetlands have been lost at a prodigious rate over past decades due to drainage for development, climate effects, and other causes. Options for management entities to protect the existing wetlands, and their functions, may focus on conserving wetlands based on spatial location vis-à-vis a floodplain or on size limitations (e.g., permitting smaller wetlands to be destroyed but not larger wetlands). Yet the effects of such management practices and the concomitant loss of depressional wetlands on watershed-scale hydrological, biogeochemical, and ecological functions are largely unknown. Using a hydrological model, we analyzed how different loss scenarios by wetland size and proximal location to the stream network affected watershed storage (i.e., inundation patterns and residence times), connectivity (i.e., streamflow contributing areas), and export (i.e., streamflow) in a large watershed in the Prairie Pothole Region of North Dakota, USA. Depressional wetlands store consequential amounts of precipitation and snowmelt. The loss of smaller depressional wetlands (< 3.0 ha) substantially decreased landscape-scale inundation heterogeneity, total inundated area, and hydrological residence times. Larger wetlands act as hydrologic “gatekeepers,” preventing surface runoff from reaching the stream network, and their modeled loss had a greater effect on streamflow due to changes in watershed connectivity and storage characteristics of larger wetlands. The wetland management scenario based on stream proximity (i.e., protecting wetlands 30 m and ~450 m from the stream) alone resulted in considerable landscape heterogeneity loss and decreased inundated area and residence times. With more snowmelt and precipitation available for runoff with wetland losses, contributing area increased across all loss scenarios. We additionally found that depressional wetlands attenuated peak flows; the probability of increased downstream flooding from wetland loss was also consistent across all loss scenarios. It is evident from this study that optimizing wetland management for one end goal (e.g., protection of large depressional wetlands for flood attenuation) over another (e.g., protecting of small depressional wetlands for biodiversity) may come at a cost for overall watershed hydrological, biogeochemical, and ecological resilience, functioning, and integrity.
Floods in a changing climate. Inundation modelling
\"Flood inundation models enable us to make hazard predictions for floodplains, mitigating increasing flood fatalities and losses. This book provides an understanding of hydraulic modelling and floodplain dynamics, with a key focus on state-of-the-art remote sensing data, and methods to estimate and communicate uncertainty. Academic researchers in the fields of hydrology, climate change, environmental science and natural hazards, and professionals and policy-makers working in flood risk mitigation, hydraulic engineering and remote sensing will find this an invaluable resource. This volume is the third in a collection of four books on flood disaster management theory and practice within the context of anthropogenic climate change. The others are: Floods in a Changing Climate: Extreme Precipitation by Ramesh Teegavarapu, Floods in a Changing Climate: Hydrological Modeling by P.P. Mujumdar and D. Nagesh Kumar and Floods in a Changing Climate: Risk Management by Slodoban Simonović\"-- Provided by publisher.
Foreword
Repeat and competing, compounding and cascading disasters have stretched the capability and capacity of communities to respond and left them with little to no time to recover.
Urbanizing the floodplain: global changes of imperviousness in flood-prone areas
Cities have historically developed close to rivers and coasts, increasing human exposure to flooding. That exposure is exacerbated by changes in climate and population, and by urban encroachment on floodplains. Although the mechanisms of how urbanization affects flooding are relatively well understood, there have been limited efforts to assess the magnitude of floodplain encroachment globally and how it has changed in both space and time. Highly resolved global datasets of both flood hazard and changes in urban area from 1985 to 2015 are now available, enabling the reconstruction of the history of floodplain encroachment at high spatial resolutions. Here we show that the urbanized area in floodplains that have an average probability of flooding of 1/100 years, has almost doubled since 1985. Further, the rate of urban expansion into these floodplains increased by a factor of 1.5 after the year 2000. We also find that urbanization rates were highest in the most hazardous areas of floodplains, with population growth in these urban floodplains suggesting an accompanying increase in population density. These results reveal the scope, trajectory and extent of global floodplain encroachment. With tangible implications for flood risk management, these data could be directly used with integrated models to assess adaptation pathways for urban flooding.
Urbanization impacts on flood risks based on urban growth data and coupled flood models
Urbanization increases regional impervious surface area, which generally reduces hydrologic response time and therefore increases flood risk. The objective of this work is to investigate the sensitivities of urban flooding to urban land growth through simulation of flood flows under different urbanization conditions and during different flooding stages. A sub-watershed in Toronto, Canada, with urban land conversion was selected as a test site for this study. In order to investigate the effects of urbanization on changes in urban flood risk, land use maps from six different years (1966, 1971, 1976, 1981, 1986, and 2000) and of six simulated land use scenarios (0%, 20%, 40%, 60, 80%, and 100% impervious surface area percentages) were input into coupled hydrologic and hydraulic models. The results show that urbanization creates higher surface runoff and river discharge rates and shortened times to achieve the peak runoff and discharge. Areas influenced by flash flood and floodplain increases due to urbanization are related not only to overall impervious surface area percentage but also to the spatial distribution of impervious surface coverage. With similar average impervious surface area percentage, land use with spatial variation may aggravate flash flood conditions more intensely compared to spatially uniform land use distribution.
Floodplains: physical geography, ecology and societal interactions
A floodplain is a flat or nearly flat land adjacent to a stream or river that experiences occasional or periodic flooding. It includes the floodway, which consists of the stream channel and adjacent areas that carry flood flows, and the flood fringe, which are areas covered by the flood, but which do not experience a strong current. This book reviews and presents research in the study of floodplains from across the globe including water and people in the Yaere Floodplain in North Cameroon, the turbidity behaviour in the Amazon floodplains, evaluating the potential and performance of New Urbanism for reducing flood risks.
Multifunctional floodplain management and biodiversity effects: a knowledge synthesis for six European countries
Floodplain ecosystems are biodiversity hotspots and supply multiple ecosystem services. At the same time they are often prone to human pressures that increasingly impact their intactness. Multifunctional floodplain management can be defined as a management approach aimed at a balanced supply of multiple ecosystem services that serve the needs of the local residents, but also those of off-site populations that are directly or indirectly impacted by floodplain management and policies. Multifunctional floodplain management has been recently proposed as a key concept to reconcile biodiversity and ecosystem services with the various human pressures and their driving forces. In this paper we present biophysics and management history of floodplains and review recent multifunctional management approaches and evidence for their biodiversity effects for the six European countries Ireland, the Netherlands, Germany, Slovakia, Hungary and the Ukraine. Multifunctional use of floodplains is an increasingly important strategy in some countries, for instance in the Netherlands and Hungary, and management of floodplains goes hand in hand with sustainable economic activities resulting in flood safety and biodiversity conservation. As a result, biodiversity is increasing in some of the areas where multifunctional floodplain management approaches are implemented. We conclude that for efficient use of management resources and ecosystem services, consensual solutions need to be realized and biodiversity needs to be mainstreamed into management activities to maximize ecosystem service provision and potential human benefits. Multifunctionality is more successful where a broad range of stakeholders with diverse expertise and interests are involved in all stages of planning and implementation.