Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
61 result(s) for "fog events"
Sort by:
Kirigami fog nets: how strips improve water collection
As scarcity of water is expected to intensify with global warming, unconventional water sources such as advective fogs may become essential. In numerous arid regions, nets are used to harvest such water droplets. However, many current fog nets are either not durable or expensive, and have poor performances for short time or low intensity fog events. With a dedicated test bench, we show here that a low-cost net with kirigami design offers a higher and faster fog collecting ability than the usual fibers nets. This kirigami fog net consists of a continuous network of strips where water quickly forms a stable film, accounting for its superior capture efficiency. We rationalize this mechanism with a simplified structure composed of disconnected strips whose optimization paves the way to the shaping of original fog nets such as the kirigami one.
Different Mechanisms for the Northern and Southern Winter Fog Events over Eastern China
Northern and southern fog events are identified over eastern China across 40 winters from 1981 to 2021. By performing composite analysis on these events, this study reveals that the formation of fog events is controlled by both dynamic and thermodynamic processes. The fog events were induced by Rossby wave trains over the Eurasian continent, leading to the development of surface wind and pressure anomalies, which favor the formation of fog events. The Rossby wave trains in northern and southern fog events are characterized by their occurrence in northern and southern locations, respectively, with different strengths. The water vapor fluxes that contribute to the enhancement of the northern fog events originate from the Yellow Sea and the East China Sea, whereas the southern fog events are characterized by water vapor from the East China Sea and the South China Sea. In both northern and southern fog events, dew point depression and positive A and K index anomalies are found in northern and southern regions of eastern China, which are indicative of supersaturated air and the unstable atmospheric saturation from the low to the middle troposphere, thus providing favorable conditions for the establishment of fog events in northern and southern regions of eastern China.
Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013
In January 2013, a severe fog and haze event (FHE) of strong intensity, long duration, and extensive coverage occurred in eastern China. The present study investigates meteorological conditions for this FHE by diagnosing both its atmospheric back- ground fields and daily evolution in January 2013. The results show that a weak East Asian winter monsoon existed in January 2013. Over eastern China, the anomalous southerly winds in the middle and lower troposphere are favorable for more water vapor transported to eastern China. An anomalous high at 500 hPa suppresses convection. The weakened surface winds are favorable for the fog and haze concentrating in eastern China. The reduction of the vertical shear of horizontal winds weakens the synoptic disturbances and vertical mixing of atmosphere. The anomalous inversion in near-surface increases the stability of surface air. All these meteorological background fields in January 2013 were conducive to the maintenance and development of fog and haze over eastern China. The diagnosis of the daily evolution of the FHE shows that the surface wind velocity and the vertical shear of horizontal winds in the middle and lower troposphere can exert dynamic effects on fog and haze. The larger (smaller) they are, the weaker (stronger) the fog and haze are. The thermodynamic effects include stratification instabil- ity in middle and lower troposphere and the inversion and dew-point deficit in near-surface. The larger (smaller) the stratifica- tion instability and the inversion are, the stronger (weaker) the fog and haze are. Meanwhile, the smaller (larger) the dewpoint deficit is, the stronger (weaker) the fog and haze are. Based on the meteorological factors, a multi-variate linear regression model is set up. The model results show that the dynamic and thermodynamic effects on the variance of the fog and haze evo- lution are almost the same. The contribution of the meteorological factors to the variance of the daily fog and haze evolution reaches 0.68, which explains more than 2/3 of the variance.
Surface Energy Budget Observed for Winter Wheat in the North China Plain During a Fog–Haze Event
In recent winters, fog–haze events have occurred frequently over the North China Plain. To understand the characteristics of conventional meteorological conditions, the near-surface radiation balance, and the surface energy budget under different pollution levels, we analyzed data collected at an observation site in Gucheng, which is located in the Hebei province in North China, based on a campaign that ran from December 1 2016 to January 31 2017. We found that meteorological conditions with a lower wind speed, weakly unstable (stable) stratification, higher relative humidity, and lower surface pressure during the daytime (night-time) are associated with fog–haze events. On heavy pollution days (defined as days with a daily mean PM2.5 concentration > 150 μg m−3), the decrease in downward shortwave radiation (S↓) and the increase in downward longwave radiation (L↓) are significant. The mean S↓ (L↓) values on clean-air days (daily mean PM2.5 concentration < 75 μg m−3) and heavily polluted days was 222 (222) W m−2 and 124 (265) W m−2, respectively. Due to the negative (positive) radiative forcing of aerosols during the daytime (night-time), the daily maximum (night-time mean) net radiation (Rn) is negatively (positively) related to the daily mean PM2.5 concentration, the correlation coefficient between the daily maximum (night-time mean) Rn and daily mean PM2.5 concentration being − 0.47 (0.51). Diurnal variations in sensible heat flux (H) and latent heat flux (λE) are insignificant on heavily polluted days, the mean daily maximum H (λE) is only 40 (28) W m−2 on heavily polluted days, but reaches 90 (42) W m−2 on clean-air days. Additionally, the friction velocity, standard deviation of vertical velocity, and turbulent kinetic energy on heavily polluted days are also quantified.
Longitudinal Exploration of Cortical Brain Activity in Cognitive Fog: An EEG Study in Patients with and without Anosmia
Background: Long-Covid, characterized by persistent symptoms following acute Covid-19 infection, represents a complex challenge for the scientific community. Among the most common and debilitating manifestations, cognitive fog is a neurological disorder characterized by mental confusion and cognitive difficulties. In this study, we investigated the long-term effects of previous Covid-19 infection on cortical brain activity in patients experiencing cognitive fog symptoms in the medium and long term. Methods: A total of 40 subjects (20 females and 20 males) aged between 45 and 70 years (mean age (M) = 59.78, standard deviation (SD) = 12.93) participated in this study. This sample included individuals with symptoms of cognitive fog, both with and without anosmia, and a control group comprised of healthy subjects. All electroencephalography (EEG) data were collected in two sessions, 1 month and 8 months after recovery from Covid-19, to measure the neurophysiological parameters of P300 and beta band rhythms. Results: The results revealed significant differences in the neurophysiological parameters of P300 and beta band rhythms in subjects affected by cognitive fog, and these alterations persist even 8 months after recovery from Covid-19. Interestingly, no significant differences were observed between the participants with anosmia and without anosmia associated with cognitive fog. Conclusions: These findings provide a significant contribution to understanding the long-term effects of Covid-19 on the brain and have important implications for future interventions aimed at managing and treating brain fog symptoms. The longitudinal assessment of cortical brain activity helps highlight the persistent impact of the virus on the neurological health of Long-Covid patients.
On the Investigation of the Typology of Fog Events in an Arid Environment and the Link with Climate Patterns
The central aim of this work is to investigate the characteristics of fog events over the United Arab Emirates (UAE) and identify the underlying physical processes responsible for fog initiation and dissipation. To achieve this, hourly meteorological measurements at eight airport stations, along with ERA5 reanalysis data (1995–2018), are utilized. The analysis indicates the dominance of radiation fog (RAD) as, on average, 70% of the observed events fall under this category. Fog in the UAE typically forms between 2000 and 0200 local time (LT) and dissipates between 0600 and 0900 LT. During a typical dense fog event recorded during 22–23 December 2017, cooling and moistening tendencies of up to 1.2 K h −1 and 0.7 g kg −1 h −1 are observed ~5–6 h before fog onset. In the vertical, a dry and warm layer above 750 hPa gradually descends from above 500 hPa to promote the development of fog. Similar conclusions are reached when analyzing composites of fog events. Further, the variability of fog occurrence associated with El Niño–Southern Oscillation (ENSO) patterns is explored. It is concluded that the El Niño (warm) and La Niña (cold) phases exhibit very different spatial characteristics with respect to surface meteorological variables. In particular, during El Niño events, the near-surface atmosphere is cooler and moister compared to La Niña events, favoring RAD fog formation over the UAE. Besides, fog events during El Niño years tend to last longer compared to La Niña years due to an earlier onset.
Radiation fog properties in two consecutive events under polluted and clean conditions in the Yangtze River Delta, China: a simulation study
Aerosol–cloud interaction (ACI) in fog and planetary boundary layer (PBL) conditions plays critical roles in the fog life cycle. However, it is not clear how ACI in the first fog (Fog1) affects the PBL and subsequently affects ACI in the second fog (Fog2), which is important information for understanding the interaction between ACI and the PBL, as well as their effects on fog properties. To fill this knowledge gap, we simulate two successive radiation fog events in the Yangtze River Delta, China, using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Our simulations indicate that the PBL conditions conducive to Fog2 formation are affected by ACI with high aerosol loading in Fog1; subsequently, the PBL promotes ACI in Fog2, resulting in a higher liquid water content, higher droplet number concentration, smaller droplet size, larger fog optical depth, wider fog distribution, and longer fog lifetime in Fog2 than in Fog1. This phenomenon is related to the following physical factors. The first factor involves meteorological conditions conducive to Fog2 formation, including low temperature, high humidity, and high stability. The second factor is the feedbacks between microphysics and radiative cooling. A higher fog droplet number concentration increases the liquid water path and fog optical depth, thereby enhancing long-wave radiative cooling and condensation near the fog top. The third factor is the feedbacks between macrophysics, radiation, and turbulence. A higher fog top presents stronger long-wave radiative cooling near the fog top than near the fog base, which weakens temperature inversion and strengthens turbulence, ultimately increasing the fog-top height and fog area. In summary, under polluted conditions, ACI postpones the dissipation of Fog1 owing to these two feedbacks and generates PBL meteorological conditions that are more conducive to the formation of Fog2 than those prior to Fog1. These conditions promote the earlier formation of Fog2, further enhancing the two feedbacks and strengthening the ACI in Fog2. Our findings are critical for studying the interaction between aerosols, fog, and the PBL; moreover, they shed new light on ACI.
How does El Niño-Southern Oscillation affect winter fog frequency over eastern China?
The winter fog frequency over eastern China displays remarkable interannual variability, which has a linear relationship with El Niño-Southern Oscillation (ENSO). Eastern China usually experiences more (less) frequent fog during El Niño (La Niña) winters. During El Niño winters, an anomalous anticyclone tends to appear over the western North Pacific (WNP), which can weaken the climatological winter northerly winds and enhance water vapor supply from oceans, conducive to the formation of foggy weather. Roughly opposite anomalies of fog frequency are displayed during La Niña winters. However, this linear relationship is mainly contributed by the La Niña and partial El Niño events, since the El Niño events exhibit diversity in impacts on the winter fog frequency due to their different types. Increased winter fog frequency can be significantly detected during eastern-Pacific (EP) El Niño, while this signal is not observed during central-Pacific (CP) El Niño. It is found that the winter fog frequency during the CP El Niño seems to be dependent on its zonal locations, associated with different WNP atmospheric circulation and local difference between air temperature and dew point temperature (T − Td) anomalies. The further eastward CP El Niño largely coincides with more frequent fog weather similar to the EP El Niño, while the further westward CP El Niño is usually accompanied with less frequent fog weather. This relationship has important implications for seasonal prediction of winter fog frequency and places a high requirement on consideration of zonal location of the CP El Niño.
Utilizing a storm-generating hotspot to study convective cloud transitions: The CACTI experiment
The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain.
Persistence Analysis and Prediction of Low-Visibility Events at Valladolid Airport, Spain
This work presents an analysis of low-visibility event persistence and prediction at Villanubla Airport (Valladolid, Spain), considering Runway Visual Range (RVR) time series in winter. The analysis covers long- and short-term persistence and prediction of the series, with different approaches. In the case of long-term analysis, a Detrended Fluctuation Analysis (DFA) approach is applied in order to estimate large-scale RVR time series similarities. The short-term persistence analysis of low-visibility events is evaluated by means of a Markov chain analysis of the binary time series associated with low-visibility events. We finally discuss an hourly short-term prediction of low-visibility events, using different approaches, some of them coming from the persistence analysis through Markov chain models, and others based on Machine Learning (ML) techniques. We show that a Mixture of Experts approach involving persistence-based methods and Machine Learning techniques provides the best results in this prediction problem.