Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,424 result(s) for "forest decline"
Sort by:
Linkage between spruce forest decline and cloud cover increase in the Qilian Mountains of the northeastern Tibetan Plateau
Key messageThe decline in Qinghai spruce forests was not aggravated by increasing temperatures; rather, excess cloud cover was the main trigger of forest decline.Forest declines accompanied by global warming have been increasingly reported worldwide. However, such declines are less frequently observed on the Tibetan Plateau. To assess the decline risk in Tibetan Plateau forests, we studied tree rings from two spruce (Picea crassifolia) forests in the Qilian Mountains of the northeastern Tibetan Plateau. We collected increment cores from 35 spruce trees at each sampling site in Qilian and Menyuan counties. Tree-ring widths were measured, crossdated and detrended. Growth decline in trees was identified based on low tree-ring index values lasting at least eight years. The percentage of the number of declining trees in all the samples was used to evaluate the occurrence and degree of forest decline events. The results showed that forest declines occurred at a low level during 1915–1933 and 1994–2005 in Qilian County and during 1996–2003 in Menyuan County. The radial growth of spruce had a significant negative correlation with the amount of cloud cover in the growing season. The results suggest that the growth declines of the spruce forests were not directly induced by the recent climate warming but were more likely related to stress conditions under increased cloud cover. Our findings provide insights into the assessment of forest decline risks and planning of forest protection.
Tree by Tree
Tree by Tree is a warning and a toolkit for the future of forest recovery. Scott J. Meiners investigates the critical biological threats endangering tree species native to the forests of eastern North America, providing a needed focus on this plight. Meiners suggests that if we are to save our forests, the first step is to recognize the threats in front of us. Meiners focuses on five familiar trees—the American elm, the American chestnut, the eastern hemlock, the white ash, and the sugar maple—and shares why they matter economically, ecologically, and culturally. From outbreaks of Dutch elm disease to infestations of emerald ash borers, Meiners highlights the challenges that have led or will lead to the disappearance of these trees from forests. In doing so, he shows us how diversity loss often disrupts intricately balanced ecosystems and how vital it is that we pay more attention to massive changes in forest composition. With practical steps for the conservation of native tree species, Tree by Tree offers the inspiration and insights we need to begin saving our forests.
Linking Tree Health, Rhizosphere Physicochemical Properties, and Microbiome in Acute Oak Decline
Forest decline diseases are complex processes driven by biotic and abiotic factors. Although information about host–microbiome–environment interactions in agricultural systems is emerging rapidly, similar studies on tree health are still in their infancy. We used acute oak decline (AOD) as a model system to understand whether the rhizosphere physicochemical properties and microbiome are linked to tree health by studying these two factors in healthy and diseased trees located in three sites in different AOD stages—low, mid and severe. We found significant changes in the rhizosphere properties and microbiome composition across the different AOD sites and between the tree health conditions. Rhizosphere pH correlated with microbiome composition, with the microbial assemblages changing in more acidic soils. At the severe AOD site, the oak trees exhibited the lowest rhizosphere pH and distinct microbiome, regardless of their health condition, whereas, at the low and mid-stage AOD sites, only diseased trees showed lower pH and the microbial composition differed significantly from healthy trees. On these two sites, less extreme soil conditions and a high presence of host-beneficial microbiota were observed in the healthy oak trees. For the first time, this study gathers evidence of associations among tree health conditions, rhizosphere properties and microbiome as well as links aboveground tree decline symptoms to the belowground environment. This provides a baseline of rhizosphere community profiling of UK oak trees and paves the way for these associations to be investigated in other tree species suffering decline disease events.
Influence of forest decline on the abundance and diversity of Raphidioptera and Mecoptera species dwelling in oak canopies
Trees in a state of decline exhibit a reduced foliage density and accumulate dead branches in their crowns. Consequently, forest decline can markedly affect both the habitats and sources of food for canopy-dwelling insects. The decline-induced increase in canopy openness may also modify the understory, shrub and ground layers, and have cascading effects on associated species. Flight interception traps and green Lindgren traps were used to survey the canopy-dwelling insects in stands of healthy and declining oak trees, in particular two insect orders: Raphidioptera, saproxylic insects associated with canopies, and Mecoptera, necrophagous or opportunistic species associated with the herbaceous or shrub strata. Overall, green Lindgren traps caught more of these insects than fl ight interception traps. The traps caught five species of Raphidioptera. Three of them, Subilla confinis, Phaeostigma major and, to a lesser extent, Phaeostigma notata, were more abundant in stands or plots with declining trees. However, the other two species of Raphidioptera, Atlantoraphidia maculicollis and Xanthostigma xanthostigma exhibited a reverse trend. Two species of Mecoptera, Panorpa germanica and Panorpa communis, were particularly abundant, but unaffected by the level of decline. Our results show that declining forests can either host more or fewer species of Raphidioptera with saproxylic larvae, whereas Mecoptera with ground-living larvae were unaffected. Seasonal phenology and sex ratio of the species are also discussed.
Risk assessment of forest decline by application of geostatistics and multi-criteria analysis
In this paper, the risk zone mapping of declining lowland forests belonging to „Morović“, management unit „Varadin-Županja“ (northern Serbia) is performed using geostatistics analysis. Based on the monitoring of groundwater level, the Kriging method has been performed for the spatial distribution of groundwater level for a multiyear period (2010–2013) – reference level and characteristic levels for the wettest and the driest year during the analyzed period. Risk assessment was determined by the variance of characteristics compared to reference levels. Then, multi-criteria decision analysis methods (AHP, PROMETHEE II) were applied to define the rank of each department (smaller forest management units) located in the research area. These analyses are very important because they enable to locate of the area with a high risk of forest decline and to rank departments using criteria: deviation from water level recorded during dry periods, species demand for water, conservation status and purpose of the unit (seed stands or technical wood). The proposed methodology is usable for the determination of the primary localities for the application of management measures conducting on the level of lower planned units (departments) and thus lead to the successful planning and more efficient forest management. Obtained results at the researched area showed that a negative influence on the watering regime has groundwater level decreasing compared to the reference level because it directly affects available water for the plants. Based on multicriteria analysis methods, it was deduced that the most endangered parts are located at the edge, while this risk is much lower in the central part of the management unit. A combination of applied methods (geostatistics and multicriteria analysis) is of great importance for forestry management.
Understanding bark beetle outbreaks: exploring the impact of changing temperature regimes, droughts, forest structure, and prospects for future forest pest management
Climate change has increased the susceptibility of forest ecosystems, resulting in escalated forest decline globally. As one of the largest forest biomasses in the Northern Hemisphere, the Eurasian boreal forests are subjected to frequent drought, windthrow, and high-temperature disturbances. Over the last century, bark beetle outbreaks have emerged as a major biotic threat to these forests, resulting in extensive tree mortality. Despite implementing various management strategies to mitigate the bark beetle populations and reduce tree mortality, none have been effective. Moreover, altered disturbance regimes due to changing climate have facilitated the success of bark beetle attacks with shorter and multivoltine life cycles, consequently inciting more frequent bark beetle-caused tree mortality. This review explores bark beetle population dynamics in the context of climate change, forest stand dynamics, and various forest management strategies. Additionally, it examines recent advancements like remote sensing and canine detection of infested trees and focuses on cutting-edge molecular approaches including RNAi-nanoparticle complexes, RNAi-symbiotic microbes, sterile insect technique, and CRISPR/Cas9-based methods. These diverse novel strategies have the potential to effectively address the challenges associated with managing bark beetles and improving forest health in response to the changing climate.
Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest
We examine the evidence for the possibility that 21st-century climate change may cause a large-scale \"dieback\" or degradation of Amazonian rainforest. We employ a new framework for evaluating the rainfall regime of tropical forests and from this deduce precipitation-based boundaries for current forest viability. We then examine climate simulations by 19 global climate models (GCMs) in this context and find that most tend to underestimate current rainfall. GCMs also vary greatly in their projections of future climate change in Amazonia. We attempt to take into account the differences between GCM-simulated and observed rainfall regimes in the 20th century. Our analysis suggests that dry-season water stress is likely to increase in E. Amazonia over the 21st century, but the region tends toward a climate more appropriate to seasonal forest than to savanna. These seasonal forests may be resilient to seasonal drought but are likely to face intensified water stress caused by higher temperatures and to be vulnerable to fires, which are at present naturally rare in much of Amazonia. The spread of fire ignition associated with advancing deforestation, logging, and fragmentation may act as nucleation points that trigger the transition of these seasonal forests into fire-dominated, low biomass forests. Conversely, deliberate limitation of deforestation and fire may be an effective intervention to maintain Amazonian forest resilience in the face of imposed 21st-century climate change. Such intervention may be enough to navigate E. Amazonia away from a possible \"tipping point,\" beyond which extensive rainforest would become unsustainable.
The magnitude, direction, and tempo of forest change in Greater Yellowstone in a warmer world with more fire
As temperatures continue rising, the direction, magnitude, and tempo of change in disturbance-prone forests remain unresolved. Even forests long resilient to stand-replacing fire face uncertain futures, and efforts to project changes in forest structure and composition are sorely needed to anticipate future forest trajectories. We simulated fire (incorporating fuels feedbacks) and forest dynamics on five landscapes spanning the Greater Yellowstone Ecosystem (GYE) to ask the following questions: (1) How and where are forest landscapes likely to change with 21st-century warming and fire activity? (2) Are future forest changes gradual or abrupt, and do forest attributes change synchronously or sequentially? (3) Can forest declines be averted by mid-21st-century stabilization of atmospheric greenhouse gas (GHG) concentrations? We used the spatially explicit individual-based forest model iLand to track multiple attributes (forest extent, stand age, tree density, basal area, aboveground carbon stocks, dominant forest types, species occupancy) through 2100 for six climate scenarios. Hot-dry climate scenarios led to more fire, but stand-replacing fire peaked in mid-century and then declined even as annual area burned continued to rise. Where forest cover persisted, previously dense forests were converted to sparse young woodlands. Increased aridity and fire drove a ratchet of successive abrupt declines (i.e., multiple annual landscape-level changes ≥20%) in tree density, basal area, and extent of older (>150 yr) forests, whereas declines in carbon stocks and mean stand age were always gradual. Forest changes were asynchronous across landscapes, but declines in stand structure always preceded reductions in forest extent and carbon stocks. Forest decline was most likely in less topographically complex landscapes dominated by fire-sensitive tree species (Picea engelmannii, Abies lasiocarpa, Pinus contorta var. latifolia) and where fire resisters (Pseudotsuga menziesii var. glauca) were not already prevalent. If current GHG emissions continue unabated (RCP 8.5) and aridity increases, a suite of forest changes would transform the GYE, with cascading effects on biodiversity and myriad ecosystem services. However, stabilizing GHG concentrations by mid-century (RCP 4.5) would slow the ratchet, moderating fire activity and dampening the magnitude and rate of forest change. Monitoring changes in forest structure may serve as an operational early warning indicator of impending forest decline.
To die or not to die: early warnings of tree dieback in response to a severe drought
Some disturbances can drive ecological systems to abrupt shifts between alternative stages (tipping points) when critical transitions occur. Drought‐induced tree death can be considered as a nonlinear shift in tree vigour and growth. However, at what point do trees become predisposed to drought‐related dieback and which factors determine this (tipping) point? We investigated these questions by characterizing the responses of three tree species, silver fir (Abies alba), Scots pine (Pinus sylvestris) and Aleppo pine (Pinus halepensis), to a severe drought event. We compared basal area increment (BAI) trends and responses to climate and drought in declining (very defoliated and dying) vs. non‐declining (slightly or not defoliated) trees by using generalized additive mixed models. Defoliation, BAI and sapwood production were related to functional proxies of tree vigour measured at the onset and end of the drought (non‐structural carbohydrate concentrations, needle N content and C isotopic discrimination, presence of wood‐inhabiting fungi). We evaluated whether early warning signals (increases in synchronicity among trees or in autocorrelation and standard deviation) could be extracted from the BAI series prior to tree death. Declining silver fir and Scots pine trees showed less growth than non‐declining trees one to three decades, respectively, before the drought event, whereas Aleppo pines showed growth decline irrespective of tree defoliation. At the end of the drought period, all species showed increased defoliation and a related reduction in the concentration of sapwood soluble sugars. Defoliation was constrained by the BAI of the previous 5 years and sapwood production. No specific wood‐inhabiting fungi were found in post‐drought declining trees apart from blue‐stain fungi, which extensively affected damaged Scots pines. Declining silver firs showed increases in BAI autocorrelation and variability prior to tree death. Synthesis. Early warning signals of drought‐triggered mortality seem to be species specific and reflect how different tree species cope with drought stress. Highly correlated declining growth patterns during drought can serve as a signal in silver fir, whereas changes in the content of sapwood soluble sugars are suitable vigour proxies for Scots and Aleppo pines. Longer growth and defoliation series, additional vigour parameters and multi‐species comparisons are required to understand and predict drought‐induced tree death.
Climate tipping points — too risky to bet against
The growing threat of abrupt and irreversible climate changes must compel political and economic action on emissions. The growing threat of abrupt and irreversible climate changes must compel political and economic action on emissions. A plane flying over a river of meltwater on glacier in Alaska