Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
273 result(s) for "forest fire risk prediction"
Sort by:
Disaster Prediction Knowledge Graph Based on Multi-Source Spatio-Temporal Information
Natural disasters have frequently occurred and caused great harm. Although the remote sensing technology can effectively provide disaster data, it still needs to consider the relevant information from multiple aspects for disaster analysis. It is hard to build an analysis model that can integrate the remote sensing and the large-scale relevant information, particularly at the sematic level. This paper proposes a disaster prediction knowledge graph for disaster prediction by integrating remote sensing information, relevant geographic information, with the expert knowledge in the field of disaster analysis. This paper constructs the conceptual layer and instance layer of the knowledge graph by building a common semantic ontology of disasters and a unified spatio-temporal framework benchmark. Moreover, this paper represents the disaster prediction model in the forms of knowledge of disaster prediction. This paper demonstrates experiments and cases studies regarding the forest fire and geological landslide risk. These investigations show that the proposed method is beneficial to multi-source spatio-temporal information integration and disaster prediction.
An Efficient Task Implementation Modeling Framework with Multi-Stage Feature Selection and AutoML: A Case Study in Forest Fire Risk Prediction
As data science advances, automated machine learning (AutoML) gains attention for lowering barriers, saving time, and enhancing efficiency. However, with increasing data dimensionality, AutoML struggles with large-scale feature sets. Effective feature selection is crucial for efficient AutoML in multi-task applications. This study proposes an efficient modeling framework combining a multi-stage feature selection (MSFS) algorithm and AutoSklearn, a robust and efficient AutoML framework, to address high-dimensional data challenges. The MSFS algorithm includes three stages: mutual information gain (MIG), recursive feature elimination with cross-validation (RFECV), and a voting aggregation mechanism, ensuring comprehensive consideration of feature correlation, importance, and stability. Based on multi-source and time series remote sensing data, this study pioneers the application of AutoSklearn for forest fire risk prediction. Using this case study, we compare MSFS with five other feature selection (FS) algorithms, including three single FS algorithms and two hybrid FS algorithms. Results show that MSFS selects half of the original features (12/24), effectively handling collinearity (eliminating 11 out of 13 collinear feature groups) and increasing AutoSklearn’s success rate by 15%, outperforming two FS algorithms with the same number of features by 7% and 5%. Among the six FS algorithms and non-FS, MSFS demonstrates the highest prediction performance and stability with minimal variance (0.09%) across five evaluation metrics. MSFS efficiently filters redundant features, enhancing AutoSklearn’s operational efficiency and generalization ability in high-dimensional tasks. The MSFS–AutoSklearn framework significantly improves AutoML’s production efficiency and prediction accuracy, facilitating the efficient implementation of various real-world tasks and the wider application of AutoML.
Integrating Multi-Source Remote Sensing Data for Forest Fire Risk Assessment
Forest fires are a frequent and destructive phenomenon in Southwestern China, posing significant threats to ecological systems and human lives and property. In response to the growing need for effective forest fire prevention, this study introduces an innovative method for predicting and assessing forest fire risk. By integrating multi-source data, including optical and microwave remote sensing, meteorological, topographic, and human activity data, the approach enhances the sensitivity of risk models to vegetation water content and other critical factors. The vegetation water content is derived from both Vegetation Optical Depth and optical remote sensing data, allowing for a more accurate assessment of changes in vegetation moisture that influence fire risk. A time series prediction model, incorporating attention mechanisms, is used to assess the probability of fire occurrence. Additionally, the method includes fire spread simulations based on Cellular Automaton and Monte Carlo approaches to evaluate potential burn areas. This combined approach can provide a comprehensive fire risk assessment using the probability of both fire occurrence and potential fire spread. Experimental results show that the integration of microwave data and attention mechanisms improves prediction accuracy by 2.8%. This method offers valuable insights for forest fire management, aiding in targeted prevention strategies and resource allocation.
Research Trends in Wildland Fire Prediction Amidst Climate Change: A Comprehensive Bibliometric Analysis
Wildfire prediction plays a vital role in the management and conservation of forest ecosystems. By providing detailed risk assessments, it contributes to the reduction of fire frequency and severity, safeguards forest resources, supports ecological stability, and ensures human safety. This study systematically reviews wildfire prediction literature from 2003 to 2023, emphasizing research trends and collaborative trends. Our findings reveal a significant increase in research activity between 2019 and 2023, primarily driven by the United States Forest Service and the Chinese Academy of Sciences. The majority of this research was published in prominent journals such as the International Journal of Wildland Fire, Forest Ecology and Management, Remote Sensing, and Forests. These publications predominantly originate from Europe, the United States, and China. Since 2020, there has been substantial growth in the application of machine learning techniques in predicting forest fires, particularly in estimating fire occurrence probabilities, simulating fire spread, and projecting post-fire environmental impacts. Advanced algorithms, including deep learning and ensemble learning, have shown superior accuracy, suggesting promising directions for future research. Additionally, the integration of machine learning with cellular automata has markedly improved the simulation of fire behavior, enhancing both efficiency and precision. The profound impact of climate change on wildfire prediction also necessitates the inclusion of extensive climate data in predictive models. Beyond conventional studies focusing on fire behavior and occurrence probabilities, forecasting the environmental and ecological consequences of fires has become integral to forest fire management and vital for formulating more effective wildfire strategies. The study concludes that significant regional disparities in knowledge exist, underscoring the need for improved research capabilities in underrepresented areas. Moreover, there is an urgent requirement to enhance the application of artificial intelligence algorithms, such as machine learning, deep learning, and ensemble learning, and to intensify efforts in identifying and leveraging various wildfire drivers to refine prediction accuracy. The insights generated from this field will profoundly augment our understanding of wildfire prediction, assisting policymakers and practitioners in managing forest resources more sustainably and averting future wildfire calamities.
Machine Learning for Predicting Forest Fire Occurrence in Changsha: An Innovative Investigation into the Introduction of a Forest Fuel Factor
Affected by global warming and increased extreme weather, Hunan Province saw a phased and concentrated outbreak of forest fires in 2022, causing significant damage and impact. Predicting the occurrence of forest fires can enhance the ability to make early predictions and strengthen early warning and responses. Currently, fire prevention and extinguishing in China’s forests and grasslands face severe challenges due to the overlapping of natural and social factors. Existing forest fire occurrence prediction models mostly take into account vegetation, topographic, meteorological and human activity factors; however, the occurrence of forest fires is closely related to the forest fuel moisture content. In this study, the traditional driving factors of forest fire such as satellite hotspots, vegetation, meteorology, topography and human activities from 2004 to 2021 were introduced along with forest fuel factors (vegetation canopy water content and evapotranspiration from the top of the vegetation canopy), and a database of factors for predicting forest fire occurrence was constructed. And a forest fire occurrence prediction model was built using machine learning methods such as the Random Forest model (RF), the Gradient Boosting Decision Tree model (GBDT) and the Adaptive Augmentation Model (AdaBoost). The accuracy of the models was verified using Area Under Curve (AUC) and four other metrics. The RF model with an AUC value of 0.981 was more accurate than all other models in predicting the probability of forest fire occurrence, followed by the GBDT (AUC = 0.978) and AdaBoost (AUC = 0.891) models. The RF model, which has the best accuracy, was selected to predict the monthly forest fire probability in Changsha in 2022 and combined with the Inverse Distance Weight Interpolation method to plot the monthly forest fire probability in Changsha. We found that the monthly spatial and temporal distribution of forest fire probability in Changsha varied significantly, with March, April, May, September, October, November and December being the months with higher forest fire probability. The highest probability of forest fires occurred in the central and northern regions. In this study, the core drivers affecting the occurrence of forest fires in Changsha City were found to be vegetation canopy evapotranspiration and vegetation canopy water content. The RF model was identified as a more suitable forest fire occurrence probability prediction model for Changsha City. Meanwhile, this study found that vegetation characteristics and combustible factors have more influence on forest fire occurrence in Changsha City than meteorological factors, and surface temperature has less influence on forest fire occurrence in Changsha City.
cffdrs: an R package for the Canadian Forest Fire Danger Rating System
Introduction The Canadian Forest Fire Danger Rating System (CFFDRS) is a globally known wildland fire risk assessment system, and two major components, the fire weather index system and the fire behavior prediction system, have been extensively used both nationally and internationally to aid operational wildland fire decision making. Methods In this paper, we present an overview of an R package cffdrs, which is developed to calculate components of the CFFDRS, and highlight some of its functionality. In particular, we demonstrate how these functions could be used for large data analysis. Results and Discussion With this cffdrs package, we provide a portal for not only a collection of R functions dealing with all available components in CFFDRS but also a platform for various additional developments that are useful for the understanding of fire occurrence and behavior. This is the first time that all relevant CFFDRS methods are incorporated into the same platform, which can be accessed by both the management and research communities.
Forest Fire Probability Mapping in Eastern Serbia: Logistic Regression versus Random Forest Method
Forest fire risk has increased globally during the previous decades. The Mediterranean region is traditionally the most at risk in Europe, but continental countries like Serbia have experienced significant economic and ecological losses due to forest fires. To prevent damage to forests and infrastructure, alongside other societal losses, it is necessary to create an effective protection system against fire, which minimizes the harmful effects. Forest fire probability mapping, as one of the basic tools in risk management, allows the allocation of resources for fire suppression, within a fire season, from zones with a lower risk to those under higher threat. Logistic regression (LR) has been used as a standard procedure in forest fire probability mapping, but in the last decade, machine learning methods such as fandom forest (RF) have become more frequent. The main goals in this study were to (i) determine the main explanatory variables for forest fire occurrence for both models, LR and RF, and (ii) map the probability of forest fire occurrence in Eastern Serbia based on LR and RF. The most important variable was drought code, followed by different anthropogenic features depending on the type of the model. The RF models demonstrated better overall predictive ability than LR models. The map produced may increase firefighting efficiency due to the early detection of forest fire and enable resources to be allocated in the eastern part of Serbia, which covers more than one-third of the country’s area.
Forest-Fire-Risk Prediction Based on Random Forest and Backpropagation Neural Network of Heihe Area in Heilongjiang Province, China
Forest fires are important factors that influence and restrict the development of forest ecosystems. In this paper, forest-fire-risk prediction was studied based on random forest (RF) and backpropagation neural network (BPNN) algorithms. The Heihe area of Heilongjiang Province is one of the key forest areas and forest-fire-prone areas in China. Based on daily historical forest-fire data from 1995 to 2015, daily meteorological data, topographic data and basic geographic information data, the main forest-fire driving factors were first analyzed by using RF importance characteristic evaluation and logistic stepwise regression. Then, the prediction models were established by using the two machine learning methods. Furthermore, the goodness of fit of the models was tested using the receiver operating characteristic test method. Finally, the fire-risk grades were divided by applying the kriging method. The results showed that 11 driving factors were significantly correlated with forest-fire occurrence, and days after the last rain, daily average relative humidity, daily maximum temperature, daily average water vapor pressure, daily minimum relative humidity and distance to settlement had a high correlation with the risk of forest-fire occurrence. The prediction accuracy of the two algorithms in regard to fire points was higher than that for nonfire points. The overall prediction accuracy and goodness of fit of the RF and BPNN algorithms were similar. The two methods were both suitable for forest-fire occurrence prediction. The high-fire-risk zones were mainly concentrated in the northwestern and central parts of the Heihe area.
A New Approach Based on TensorFlow Deep Neural Networks with ADAM Optimizer and GIS for Spatial Prediction of Forest Fire Danger in Tropical Areas
Frequent forest fires are causing severe harm to the natural environment, such as decreasing air quality and threatening different species; therefore, developing accurate prediction models for forest fire danger is vital to mitigate these impacts. This research proposes and evaluates a new modeling approach based on TensorFlow deep neural networks (TFDeepNN) and geographic information systems (GIS) for forest fire danger modeling. Herein, TFDeepNN was used to create a forest fire danger model, whereas the adaptive moment estimation (ADAM) optimization algorithm was used to optimize the model, and GIS with Python programming was used to process, classify, and code the input and output. The modeling focused on the tropical forests of the Phu Yen Province (Vietnam), which incorporates 306 historical forest fire locations from 2019 to 2023 and ten forest-fire-driving factors. Random forests (RF), support vector machines (SVM), and logistic regression (LR) were used as a baseline for the model comparison. Different statistical metrics, such as F-score, accuracy, and area under the ROC curve (AUC), were employed to evaluate the models’ predictive performance. According to the results, the TFDeepNN model (with F-score of 0.806, accuracy of 79.3%, and AUC of 0.873) exhibits high predictive performance and surpasses the performance of the three baseline models: RF, SVM, and LR; therefore, TFDeepNN represents a novel tool for spatially predicting forest fire danger. The forest fire danger map from this study can be helpful for policymakers and authorities in Phu Yen Province, aiding sustainable land-use planning and management.
GIS-Based Forest Fire Risk Model: A Case Study in Laoshan National Forest Park, Nanjing
Fire risk prediction is significant for fire prevention and fire resource allocation. Fire risk maps are effective methods for quantifying regional fire risk. Laoshan National Forest Park has many precious natural resources and tourist attractions, but there is no fire risk assessment model. This paper aims to construct the forest fire risk map for Nanjing Laoshan National Forest Park. The forest fire risk model is constructed by factors (altitude, aspect, topographic wetness index, slope, distance to roads and populated areas, normalized difference vegetation index, and temperature) which have a great influence on the probability of inducing fire in Laoshan. Since the importance of factors in different study areas is inconsistent, it is necessary to calculate the significance of each factor of Laoshan. After the significance calculation is completed, the fire risk model of Laoshan can be obtained. Then, the fire risk map can be plotted based on the model. This fire risk map can clarify the fire risk level of each part of the study area, with 16.97% extremely low risk, 48.32% low risk, 17.35% moderate risk, 12.74% high risk and 4.62% extremely high risk, and it is compared with the data of MODIS fire anomaly point. The result shows that the accuracy of the risk map is 76.65%.