Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "function−structural synergy"
Sort by:
Evaluation of the Spatiotemporal Evolution of China’s Ecological Spatial Network Function–Structure and Its Pattern Optimization
(1) Background: Eco−spatial networks play an important role in enhancing ecosystem services and landscape connectivity. It is necessary to study landscape structure optimization to achieve synergistic gains in network connectivity and ecosystem functionality. (2) Method: Based on remote sensing data, RS and GIS were used to evaluate the spatiotemporal changes in ecosystem services in China. Combined with complex network theory, the spatiotemporal evolution of China’s ecological spatial network and its topological structure from 2005 to 2020 is discussed. Network function–structure co−optimization was carried out using the edge augmentation strategy. (3) Result: The “three River resource” has high water conservation and high soil and water conservation in southeastern hilly areas. There is strong windbreak and sand fixation in southeastern Inner Mongolia. In the past 15 years, there have been about 8200 sources and about 14,000 corridors. The network has the characteristics of small−world and heterogeneity. After optimization, 18 sources and 3180 corridors are added, and the network connectivity and robustness are stronger. Finally, five regions are divided according to the network heterogeneity and corresponding protection and management countermeasures are proposed to provide scientific guidance for the country’s territorial space planning.