Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
97
result(s) for
"functional wood anatomy"
Sort by:
Novel Hydraulic Vulnerability Proxies for a Boreal Conifer Species Reveal That Opportunists May Have Lower Survival Prospects under Extreme Climatic Events
2016
Top dieback in 40-60 years old forest stands of Norway spruce [Picea abies (L.) Karst.] in southern Norway is supposed to be associated with climatic extremes. Our intention was to learn more about the processes related to top dieback and in particular about the plasticity of possible predisposing factors. We aimed at (i) developing proxies for P 50 based on anatomical data assessed by SilviScan technology and (ii) testing these proxies for their plasticity regarding climate, in order to (iii) analyze annual variations of hydraulic proxies of healthy looking trees and trees with top dieback upon their impact on tree survival. At two sites we selected 10 tree pairs, i.e., one healthy looking tree and one tree with visual signs of dieback such as dry tops, needle shortening and needle yellowing (n = 40 trees). Vulnerability to cavitation (P 50) of the main trunk was assessed in a selected sample set (n = 19) and we thereafter applied SilviScan technology to measure cell dimensions (lumen (b) and cell wall thickness (t)) in these specimen and in all 40 trees in tree rings formed between 1990 and 2010. In a first analysis step, we searched for anatomical proxies for P 50. The set of potential proxies included hydraulic lumen diameters and wall reinforcement parameters based on mean, radial, and tangential tracheid diameters. The conduit wall reinforcement based on tangential hydraulic lumen diameters ((t/b ht)(2)) was the best estimate for P 50. It was thus possible to relate climatic extremes to the potential vulnerability of single annual rings. Trees with top dieback had significantly lower (t/b ht)(2) and wider tangential (hydraulic) lumen diameters some years before a period of water deficit (2005-2006). Radial (hydraulic) lumen diameters showed however no significant differences between both tree groups. (t/b ht)(2) was influenced by annual climate variability; strongest correlations were found with precipitation in September of the previous growing season: high precipitation in previous September resulted in more vulnerable annual rings in the next season. The results are discussed with respect to an \"opportunistic behavior\" and genetic predisposition to drought sensitivity.
Journal Article
Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes
2004
A model of xylem conduit function was applied to gymnosperm tracheids with torus-margo pit membranes for comparison with angiosperm vessels. Tracheids from 17 gymnosperm tree species with circular bordered pits and air-seed pressures from 0.8 to 11.8 MPa were analyzed. Tracheids were more reinforced against implosion than vessels, consistent with their double function in transport and support. Tracheid pits were 3.3 to 44 times higher in hydraulic conductivity than vessel pits because of greater membrane conductivity of the torus-margo configuration. Tight scaling between torus and pit size maximized pit conductivity. Higher pit conductivity allowed tracheids to be 1.7-3.4 times shorter than vessels and still achieve 95% of their lumen-limited maximum conductivity. Predicted tracheid lengths were consistent with measured lengths. The torus-margo structure is important for maximizing the conductivity of the inherently length-limited tracheid: replacing the torus-margo membrane with a vessel membrane caused stem tracheid conductivity to drop by 41%. Tracheids were no less hydraulically efficient than vessels if they were long enough to reach their lumen-limiting conductivity. However, this may only be possible for lumen diameters below approximately 60-70 micrometer.
Journal Article
Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms
by
Hacke, Uwe G
,
Taneda, Haruhiko
,
Li, Yangyang
in
Air pressure
,
anatomy & histology
,
Angiospermae
2008
A centrifugal method is used to measure 'vulnerability curves' which show the loss of hydraulic conductivity in xylem by cavitation. Until recently, conductivity was measured between bouts of centrifugation using a gravity-induced head. Now, conductivity can be measured during centrifugation. This 'spin' method is faster than the 'gravity' technique, but correspondence between the two has not been evaluated. The two methods were compared on the same stem segments for two conifer, four diffuse-porous, and four ring-porous species. Only 17 of 60 conductivity measurements differed, with differences in the order of 10%. When different, the spin method gave higher conductivities at the beginning of the curve and lower at the end. Pressure at 50% loss of conductivity, and mean cavitation pressure, were the same in 14 of 20 comparisons. When different, the spin method averaged 0.32 MPa less negative. Ring-porous species showed a precipitous initial drop in conductivity by both techniques. This striking pattern was confirmed by the air-injection method and native embolism measurements. Close correspondence inspires confidence in both methods, each of which has unique advantages. The observation that ring-porous species operate at only a fraction of their potential conductivity at midday demands further study.
Journal Article
Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes
2004
A model predicted pit and vessel conductivity, the air-seed pressure for cavitation, and the implosion pressure causing vessel collapse. Predictions were based on measurements from 27 angiosperm species with circular bordered pits and air-seed pressures of 0.2-11.3 MPa. Vessel implosion pressure exceeded air-seed pressure by a safety factor of 1.8 achieved by the increase in vessel wall thickness per vessel diameter with air-seed pressure. Intervessel pitting reduced the implosion pressure by 20 to 40%. Pit hydraulic conductivity decreased by 30-fold from low (<1 MPa) to high (>10 MPa) air-seed pressure primarily because of decreasing pit membrane conductivity. Vessel conductivity (per length and wall area) increased with vessel length as higher lumen conductivity overcame low pit conductivity. At the \"saturating vessel length,\" vessel conductivity maximized at the Hagen-Poiseuille value for the lumen per wall area. Saturated vessel conductivity declined by sixfold with increasing air-seed pressure because of increased wall thickness associated with increased implosion resistance. The saturated vessel length is likely the optimal length because: (a) shorter vessels have lower conductivities, (b) longer vessels do not increase conductivity when functional yet decrease it more when cavitated, (c) observed pit structure most closely optimized vessel conductivity at the saturated length, and (d) saturated lengths were similar to measured lengths.
Journal Article
Radial shrinkage and ultrasound acoustic emissions of fresh versus pre-dried Norway spruce sapwood
by
Konnerth, Johannes
,
Salaberger, Dietmar
,
Hansmann, Christian
in
Acoustic emission
,
Acoustic emission testing
,
Acoustics
2010
Acoustic emission (AE) and radial shrinkage were compared between fully saturated fresh and pre-dried Norway spruce sapwood during dehydration at ambient temperature. Hydraulic conductivity measurements, anatomical investigations on bordered pits and X-ray computed tomography (CT) scans were done to search for possible AE sources other than the breakage of the water columns inside the tracheids. Both fresh and pre-dried specimens showed radial shrinkage due to drying surface layers right from the beginning of dehydration, which induced almost no AE. Whereas no dimensional changes occurred in pre-dried wood thereafter, fresh wood showed a rapid shrinkage increase starting at 25% relative water loss. This dimensional change ceased when further moisture got lost and was even partially reversed. AE of fresh wood showed much higher activity and energy, which is a waveform feature that describes the strength of the acoustic signal. Extremely high single AE energy events were detected at this critical stage of dehydration. After partial recovery from shrinkage, neither dimensional changes nor AE activity showed differences between fresh and pre-dried wood after more than 80% relative moisture loss. Our results suggested that fresh sapwood is more prone to dehydration stresses than pre-dried sapwood. Differences in AE and shrinkage behavior might be due to the weakening or distortion of the pit membranes (cavitation fatigue), pit aspiration, structural changes of the cell walls and micro-checks, which occurred during the first dehydration cycle.
Journal Article
Ecological trends in the wood anatomy of Vaccinioideae (Ericaceae s.l.)
by
Jansen, Steven
,
Smets, Erik
,
Luteyn, James L.
in
Altitude
,
climatic factors
,
Ecological and functional wood anatomy
2004
The ecological wood anatomy of 128 vaccinioid wood samples (including 115 species, 35 genera), collected between 39°S and 60°N latitude and 10 m to 3400 m altitude is studied. Several wood anatomical features within the subfamily, viz. tangential vessel diameter, average length of tracheary elements, height of multiseriate rays, and presence of prismatic crystals are negatively correlated with increasing latitude, while vessel density and helical thickenings show a positive correlation with increasing latitude. Similar latitudinal trends are found within the genus
Vaccinium (31 species studied). The correlation between various wood anatomical features and latitude is surprisingly high despite the fact that most tropical species grow in montane regions, which are rather similar to the temperate, non-tropical habitats as regards climatic conditions. Altitudinal trends, however, are weak. The impact of different life forms (shrubs, trees and lianas) and the amount of precipitation also plays a significant role in various continuous wood features. Furthermore, some of these anatomical features are correlated with each other. Part of the variation in vessel characters may be the result of functional adaptations to different climatic zones and environments, especially with respect to conductive efficiency and safety.
Journal Article
Asteropeia and Physena (Caryophyllales): A case study in comparative wood anatomy
2006
Previous analyses of Asteropeia and Physena have not compared the wood anatomy of these genera to those of Caryophyllales s.l. Molecular evidence shows that the two genera form a clade that is a sister group of the core Caryophyllales. Synapomorphies of the Asteropeia—Physena clade include small circular alternate pits on vessels, presence of vasicentric tracheids plus fiber-tracheids, presence of abaxial-confluent plus diffuse axial parenchyma, and presence of predominantly uniseriate rays. These features are analyzed with respect to habit and ecology of the two genera. Solitary vessels, present in both genera, are related to the presence of vasicentric tracheids. Autapomorphies in the two genera seem related to adaptations by Physena as a shrub of moderately dry habitats (e.g., narrower vessel elements, abundant vasicentric tracheids, square to erect cells in rays) as compared to alternate character expressions that seem related to the arboreal habit and humid forest ecology of Asteropeia. The functional significance of vasicentric tracheids and fiber-tracheids in dicotyledons is briefly reviewed in the light of wood anatomy of the two genera.
Journal Article
Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant
2014
This review presents a framework for evaluating how cells, tissues, organs, and whole plants perform both hydraulic and mechanical functions. The morphological alterations that affect dual functionality are varied: individual cells can have altered morphology; tissues can have altered partitioning to functions or altered cell alignment; and organs and whole plants can differ in their allocation to different tissues, or in the geometric distribution of the tissues they have. A hierarchical model emphasizes that morphological traits influence the hydraulic or mechanical properties; the properties, combined with the plant unit's environment, then influence the performance of that plant unit. As a special case, we discuss the mechanisms by which the proxy property wood density has strong correlations to performance but without direct causality. Traits and properties influence multiple aspects of performance, and there can be mutual compensations such that similar performance occurs. This compensation emphasizes that natural selection acts on, and a plant's viability is determined by, its performance, rather than its contributing traits and properties. Continued research on the relationships among traits, and on their effects on multiple aspects of performance, will help us better predict, manage, and select plant material for success under multiple stresses in the future.
Journal Article
The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest
2017
Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest.
We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area: sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia.
On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area: sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood.
In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios.
Journal Article
Wood traits related to size and life history of trees in a Panamanian rainforest
by
Sabine Rosner
,
Ursula Hietz-Seifert
,
S. Joseph Wright
in
biomass
,
growth rate
,
hydraulic conductivity
2017
Wood structure differs widely among tree species and species with faster growth, higher mortality and larger maximum size have been reported to have fewer but larger vessels and higher hydraulic conductivity (Kh). However, previous studies compiled data from various sources, often failed to control tree size and rarely controlled variation in other traits.
We measured wood density, tree size and vessel traits for 325 species from a wet forest in Panama, and compared wood and leaf traits to demographic traits using species-level data and phylogenetically independent contrasts.
Wood traits showed strong phylogenetic signal whereas pairwise relationships between traits were mostly phylogenetically independent. Trees with larger vessels had a lower fraction of the cross-sectional area occupied by vessel lumina, suggesting that the hydraulic efficiency of large vessels permits trees to dedicate a larger proportion of the wood to functions other than water transport.
Vessel traits were more strongly correlated with the size of individual trees than with maximal size of a species. When individual tree size was included in models, Kh scaled positively with maximal size and was the best predictor for both diameter and biomass growth rates, but was unrelated to mortality.
Journal Article