Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,401 result(s) for "functionalization"
Sort by:
Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview
A novel class of carbon nanotube (CNT)-based nanomaterials has been surging since 1991 due to their noticeable mechanical and electrical properties, as well as their good electron transport properties. This is evidence that the development of CNT-reinforced polymer composites could contribute in expanding many areas of use, from energy-related devices to structural components. As a promising material with a wide range of applications, their poor solubility in aqueous and organic solvents has hindered the utilizations of CNTs. The current state of research in CNTs—both single-wall carbon nanotubes (SWCNT) and multiwalled carbon nanotube (MWCNT)-reinforced polymer composites—was reviewed in the context of the presently employed covalent and non-covalent functionalization. As such, this overview intends to provide a critical assessment of a surging class of composite materials and unveil the successful development associated with CNT-incorporated polymer composites. The mechanisms related to the mechanical, thermal, and electrical performance of CNT-reinforced polymer composites is also discussed. It is vital to understand how the addition of CNTs in a polymer composite alters the microstructure at the micro- and nano-scale, as well as how these modifications influence overall structural behavior, not only in its as fabricated form but also its functionalization techniques. The technological superiority gained with CNT addition to polymer composites may be advantageous, but scientific values are here to be critically explored for reliable, sustainable, and structural reliability in different industrial needs.
Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development
Carbon nanotubes (CNTs) have been widely studied and used for the construction of electrochemical biosensors owing to their small size, cylindrical shape, large surface-to-volume ratio, high conductivity and good biocompatibility. In electrochemical biosensors, CNTs serve a dual purpose: they act as immobilization support for biomolecules as well as provide the necessary electrical conductivity for electrochemical transduction. The ability of a recognition molecule to detect the analyte is highly dependent on the type of immobilization used for the attachment of the biomolecule to the CNT surface, a process also known as biofunctionalization. A variety of biofunctionalization methods have been studied and reported including physical adsorption, covalent cross-linking, polymer encapsulation etc. Each method carries its own advantages and limitations. In this review we provide a comprehensive review of non-covalent functionalization of carbon nanotubes with a variety of biomolecules for the development of electrochemical biosensors. This method of immobilization is increasingly being used in bioelectrode development using enzymes for biosensor and biofuel cell applications.
The Rising Aerogel Fibers: Status, Challenges, and Opportunities
Aerogel fibers garner tremendous scientific interest due to their unique properties such as ultrahigh porosity, large specific surface area, and ultralow thermal conductivity, enabling diverse potential applications in textile, environment, energy conversion and storage, and high‐tech areas. Here, the fabrication methodologies to construct the aerogel fibers starting from nanoscale building blocks are overviewed, and the spinning thermodynamics and spinning kinetics associated with each technology are revealed. The huge pool of material choices that can be assembled into aerogel fibers is discussed. Furthermore, the fascinating properties of aerogel fibers, including mechanical, thermal, sorptive, optical, and fire‐retardant properties are elaborated on. Next, the nano‐confining functionalization strategy for aerogel fibers is particularly highlighted, touching upon the driving force for liquid encapsulation, solid–liquid interface adhesion, and interfacial stability. In addition, emerging applications in thermal management, smart wearable fabrics, water harvest, shielding, heat transfer devices, artificial muscles, and information storage, are discussed. Last, the existing challenges in the development of aerogel fibers are pointed out and light is shed on the opportunities in this burgeoning field. Aerogel fibers emerge as rising stars in diverse fields of thermal management, smart wearable fabrics, water harvest, shielding, heat‐transfer devices, artificial muscles, and information storage. Starting from nanoscale building blocks, spinning thermodynamics and spinning kinetics associated with a variety of technologies are revealed. Aerogel fibers will earn an irreplaceable place with the advances in materials and fabrication methodologies.
When metal-catalyzed C–H functionalization meets visible-light photocatalysis
While aiming at sustainable organic synthesis, over the last decade particular attention has been focused on two modern fields, C–H bond activation, and visible-light-induced photocatalysis. Couplings through C–H bond activation involve the use of non-prefunctionalized substrates that are directly converted into more complex molecules, without the need of a previous functionalization, thus considerably reduce waste generation and a number of synthetic steps. In parallel, transformations involving photoredox catalysis promote radical reactions in the absence of radical initiators. They are conducted under particularly mild conditions while using the visible light as a cheap and economic energy source. In this way, these strategies follow the requirements of environment-friendly chemistry. Regarding intrinsic advantages as well as the complementary mode of action of the two catalytic transformations previously introduced, their merging in a synergistic dual catalytic system is extremely appealing. In that perspective, the scope of this review aims to present innovative reactions combining C–H activation and visible-light induced photocatalysis.
RETRACTED: Fe3O4 Nanoparticles for Complex Targeted Delivery and Boron Neutron Capture Therapy
Magnetic Fe3O4 nanoparticles (NPs) and their surface modification with therapeutic substances are of great interest, especially drug delivery for cancer therapy, including boron-neutron capture therapy (BNCT). In this paper, we present the results of boron-rich compound (carborane borate) attachment to previously aminated by (3-aminopropyl)-trimethoxysilane (APTMS) iron oxide NPs. Fourier transform infrared spectroscopy with Attenuated total reflectance accessory (ATR-FTIR) and energy-dispersive X-ray analysis confirmed the change of the element content of NPs after modification and formation of new bonds between Fe3O4 NPs and the attached molecules. Transmission (TEM) and scanning electron microscopy (SEM) showed Fe3O4 NPs’ average size of 18.9 nm. Phase parameters were studied by powder X-ray diffraction (XRD), and the magnetic behavior of Fe3O4 NPs was elucidated by Mössbauer spectroscopy. The colloidal and chemical stability of NPs was studied using simulated body fluid (phosphate buffer—PBS). Modified NPs have shown excellent stability in PBS (pH = 7.4), characterized by XRD, Mössbauer spectroscopy, and dynamic light scattering (DLS). Biocompatibility was evaluated in-vitro using cultured mouse embryonic fibroblasts (MEFs). The results show us an increasing of IC50 from 0.110 mg/mL for Fe3O4 NPs to 0.405 mg/mL for Fe3O4-Carborane NPs. The obtained data confirm the biocompatibility and stability of synthesized NPs and the potential to use them in BNCT.
Controlled Functionalization Strategy of Proteins Preserves their Structural Integrity While Binding to Nanocarriers (Adv. Mater. Interfaces 30/2024)
Protein Functionalization Modification of proteins is often required for their use as targeting agents. However, chemical over‐modification can lead to the loss of their native structure and thus affect their functionality. Based on NHS ester chemistry, in this article 2400472 by Katharina Landfester and co‐workers, a minimal protein modification strategy including detailed characterization is developed, keeping the secondary structure intact and allowing their further attachment to nanocarriers via click chemistry.
Hydrophilic Surface Functionalization of Electrospun Nanofibrous Scaffolds in Tissue Engineering
Electrospun polymer nanofibers have received much attention in tissue engineering due to their valuable properties such as biocompatibility, biodegradation ability, appropriate mechanical properties, and, most importantly, fibrous structure, which resembles the morphology of extracellular matrix (ECM) proteins. However, they are usually hydrophobic and suffer from a lack of bioactive molecules, which provide good cell adhesion to the scaffold surface. Post-electrospinning surface functionalization allows overcoming these limitations through polar groups covalent incorporation to the fibers surface, with subsequent functionalization with biologically active molecules or direct deposition of the biomolecule solution. Hydrophilic surface functionalization methods are classified into chemical approaches, including wet chemical functionalization and covalent grafting, a physiochemical approach with the use of a plasma treatment, and a physical approach that might be divided into physical adsorption and layer-by-layer assembly. This review discusses the state-of-the-art of hydrophilic surface functionalization strategies of electrospun nanofibers for tissue engineering applications. We highlighted the major advantages and drawbacks of each method, at the same time, pointing out future perspectives and solutions in the hydrophilic functionalization strategies.
Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications
Conventional nanoparticle synthesis methods involve harsh conditions, high costs, and environmental pollution. In this context, researchers are actively searching for sustainable, eco-friendly alternatives to conventional chemical synthesis methods. This has led to the development of green synthesis procedures among which the exploration of the plant-mediated synthesis of nanoparticles experienced a great development. Especially, because plant extracts can work as reducing and stabilizing agents. This opens up new possibilities for cost-effective, environmentally-friendly nanoparticle synthesis with enhanced size uniformity and stability. Moreover, bio-inspired nanoparticles derived from plants exhibit intriguing pharmacological properties, making them highly promising for use in medical applications due to their biocompatibility and nano-dimension.BackgroundConventional nanoparticle synthesis methods involve harsh conditions, high costs, and environmental pollution. In this context, researchers are actively searching for sustainable, eco-friendly alternatives to conventional chemical synthesis methods. This has led to the development of green synthesis procedures among which the exploration of the plant-mediated synthesis of nanoparticles experienced a great development. Especially, because plant extracts can work as reducing and stabilizing agents. This opens up new possibilities for cost-effective, environmentally-friendly nanoparticle synthesis with enhanced size uniformity and stability. Moreover, bio-inspired nanoparticles derived from plants exhibit intriguing pharmacological properties, making them highly promising for use in medical applications due to their biocompatibility and nano-dimension.This study investigates the role of specific phytochemicals, such as phenolic compounds, terpenoids, and proteins, in plant-mediated nanoparticle synthesis together with their influence on particle size, stability, and properties. Additionally, we highlight the potential applications of these bio-derived nanoparticles, particularly with regard to drug delivery, disease management, agriculture, bioremediation, and application in other industries.ObjectiveThis study investigates the role of specific phytochemicals, such as phenolic compounds, terpenoids, and proteins, in plant-mediated nanoparticle synthesis together with their influence on particle size, stability, and properties. Additionally, we highlight the potential applications of these bio-derived nanoparticles, particularly with regard to drug delivery, disease management, agriculture, bioremediation, and application in other industries.Extensive research on scientific databases identified green synthesis methods, specifically plant-mediated synthesis, with a focus on understanding the contributions of phytochemicals like phenolic compounds, terpenoids, and proteins. The database search covered the field's development over the past 15 years.MethodologyExtensive research on scientific databases identified green synthesis methods, specifically plant-mediated synthesis, with a focus on understanding the contributions of phytochemicals like phenolic compounds, terpenoids, and proteins. The database search covered the field's development over the past 15 years.Insights gained from this exploration highlight plant-mediated green synthesis for cost-effective nanoparticle production with significant pharmacological properties. Utilizing renewable biological resources and controlling nanoparticle characteristics through biomolecule interactions offer promising avenues for future research and applications.ResultsInsights gained from this exploration highlight plant-mediated green synthesis for cost-effective nanoparticle production with significant pharmacological properties. Utilizing renewable biological resources and controlling nanoparticle characteristics through biomolecule interactions offer promising avenues for future research and applications.This review delves into the scientific intricacies of plant-mediated synthesis of nanoparticles, highlighting the advantages of this approach over the traditional chemical synthesis methods. The study showcases the immense potential of green synthesis for medical and other applications, aiming to inspire further research in this exciting area and promote a more sustainable future.ConclusionThis review delves into the scientific intricacies of plant-mediated synthesis of nanoparticles, highlighting the advantages of this approach over the traditional chemical synthesis methods. The study showcases the immense potential of green synthesis for medical and other applications, aiming to inspire further research in this exciting area and promote a more sustainable future.
Functionalization of Porphyrins Using Metal-Catalyzed C–H Activation
The review is devoted to the C–H functionalization of porphyrins. Porphyrins exhibit the properties of organic semiconductors, light energy converters, chemical and electrochemical catalysts, and photocatalysts. The review describes the iridium- and palladium-catalyzed direct functionalization of porphyrins, with more attention given to the results obtained in our laboratory. The development and improvement of synthetic methods that do not require preliminary modification of the substrate with various functional groups are extremely important for the preparation of new organic materials based on porphyrins. This makes it possible to simplify the synthetic procedure, to make the synthesis more economical, environmentally safe, and simple to perform.
High-Valent NiIII and NiIV Species Relevant to C–C and C–Heteroatom Cross-Coupling Reactions: State of the Art
Ni catalysis constitutes an active research arena with notable applications in diverse fields. By analogy with its parent element palladium, Ni catalysts provide an appealing entry to build molecular complexity via cross-coupling reactions. While Pd catalysts typically involve a M0/MII redox scenario, in the case of Ni congeners the mechanistic elucidation becomes more challenging due to their innate properties (like enhanced reactivity, propensity to undergo single electron transformations vs. 2e− redox sequences or weaker M–Ligand interaction). In recent years, mechanistic studies have demonstrated the participation of high-valent NiIII and NiIV species in a plethora of cross-coupling events, thus accessing novel synthetic schemes and unprecedented transformations. This comprehensive review collects the main contributions effected within this topic, and focuses on the key role of isolated and/or spectroscopically identified NiIII and NiIV complexes. Amongst other transformations, the resulting NiIII and NiIV compounds have efficiently accomplished: i) C–C and C–heteroatom bond formation; ii) C–H bond functionalization; and iii) N–N and C–N cyclizative couplings to forge heterocycles.