Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,472 result(s) for "galactic background"
Sort by:
On the antenna calibration of space radio instruments using the galactic background: General formulas and application to STEREO/WAVES
We present general formulas to calibrate the antennas of a space‐based radio instrument using as a reference source the galactic background radiation (or any isotropic source). We apply these formulas to determine the effective length of the STEREO/WAVES antennas. The results for the monopoles are in agreement with the measurements performed on ground, and we provide new results for the XY and YZ dipoles used by the instrument. Our method also allows us to accurately determine the internal noise background of the radio receiver. Key Points We provide a calibration toolkit for spaceborne radio instruments We present an example of the application of this technique to S/WAVES First in‐flight measurements of the effective length of S/WAVE dipoles
Prediction of background levels for the Wind WAVES instrument and implications for the galactic background radiation
We investigate and predict the observed background levels for the TNR, RAD1, and RAD2 receivers when connected to the X, Y, and Z antennas of the WAVES instrument on the spacecraft Wind. The receivers are connected to either a single antenna, in “SEP” mode, or a combination of antennas, in “SUM” mode. With the TNR receiver in SEP (X) mode, the predicted backgrounds agree to within 20% when modeled using a two component model for the quasi‐thermal plasma noise (QTN). Calibrating the RAD1 in SEP (X) mode observations against TNR allows us to calculate the relative receiver gain GR1 = 1.43 ± 0.18. Using the RAD1 data in SUM (X+Z) mode, the ratio of antenna gains is found to be R = 6.5, in agreement with preflight measurements. Observed differences between the SEP (X) and SUM (X+Z) modes are explained for the first time, and the predicted levels of QTN and galactic background are found to agree to within 20%. RAD2 is also calibrated against RAD1 and TNR, yielding a total gain GR2Gy = 2.5 ± 0.3. Differences between the predicted and observed galactic background spectra are used to estimate the effective antenna lengths for the X and Y antennas, which are found to be between the physical monopole antenna length L and the Hansen (1981) prediction of L. The analyses are consistent with the Novaco and Brown (1978) galactic background model, which decreases much faster than that of Cane (1979). Our model background spectrum is useful for theory‐data comparisons of type II and III bursts.
The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars
The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ~1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.
The first galaxies in the universe
This book provides a comprehensive, self-contained introduction to one of the most exciting frontiers in astrophysics today: the quest to understand how the oldest and most distant galaxies in our universe first formed. Until now, most research on this question has been theoretical, but the next few years will bring about a new generation of large telescopes that promise to supply a flood of data about the infant universe during its first billion years after the big bang. This book bridges the gap between theory and observation. It is an invaluable reference for students and researchers on early galaxies. The First Galaxies in the Universestarts from basic physical principles before moving on to more advanced material. Topics include the gravitational growth of structure, the intergalactic medium, the formation and evolution of the first stars and black holes, feedback and galaxy evolution, reionization, 21-cm cosmology, and more. Provides a comprehensive introduction to this exciting frontier in astrophysicsBegins from first principlesCovers advanced topics such as the first stars and 21-cm cosmologyPrepares students for research using the next generation of large telescopesDiscusses many open questions to be explored in the coming decade
Poppy Program Fact Sheet
Presents basic facts about Poppy electronic intelligence reconnaissance system.
Raising the Periscope...Grab and Poppy: America's Early ELINT Satellites Includes Photographs
Presents brief history of Grab and its successor Poppy, two early U.S. satellite-based electronic intelligence programs.
Formation of massive black holes in rapidly growing pre-galactic gas clouds
The origin of the supermassive black holes that inhabit the centres of massive galaxies remains unclear 1 , 2 . Direct-collapse black holes—remnants of supermassive stars, with masses around 10,000 times that of the Sun—are ideal seed candidates 3 – 6 . However, their very existence and their formation environment in the early Universe are still under debate, and their supposed rarity makes modelling their formation difficult 7 , 8 . Models have shown that rapid collapse of pre-galactic gas (with a mass infall rate above some critical value) in metal-free haloes is a requirement for the formation of a protostellar core that will then form a supermassive star 9 , 10 . Here we report a radiation hydrodynamics simulation of early galaxy formation 11 , 12 that produces metal-free haloes massive enough and with sufficiently high mass infall rates to form supermassive stars. We find that pre-galactic haloes and their associated gas clouds that are exposed to a Lyman–Werner intensity roughly three times the intensity of the background radiation and that undergo at least one period of rapid mass growth early in their evolution are ideal environments for the formation of supermassive stars. The rapid growth induces substantial dynamical heating 13 , 14 , amplifying the Lyman–Werner suppression that originates from a group of young galaxies 20 kiloparsecs away. Our results strongly indicate that the dynamics of structure formation, rather than a critical Lyman–Werner flux, is the main driver of the formation of massive black holes in the early Universe. We find that the seeds of massive black holes may be much more common than previously considered in overdense regions of the early Universe, with a co-moving number density up to 10 −3 per cubic megaparsec. Simulations of early galaxy formation suggest that the dynamics of structure formation, rather than the Lyman–Werner flux, drives the formation of massive black holes in the early Universe.
The Fermi/eROSITA bubbles: a look into the nuclear outflow from the Milky Way
Galactic outflows are ubiquitous in galaxies containing active star formation or supermassive black hole activity. The presence of a large-scale outflow from the center of our own Galaxy was confirmed after the discovery of two large (~ 8–10 kpc) γ-ray bubbles using the Fermi-LAT telescope. These bubbles, known as the Fermi Bubbles, are highly symmetric about the Galactic disk as well as around the Galactic rotation axis and appear to emanate from the center of our Galaxy. The sharp edges of these bubbles suggest that they are related to the Galactic outflow. These bubbles are surrounded by two even bigger (~ 12–14 kpc) X-ray structures, known as the eROSITA bubbles. Together, they represent the characteristics of an outflow from the Galaxy into the circumgalactic medium. Multi-wavelength observations such as in radio, microwave, and UV toward the Fermi Bubbles have provided us with much information in the last decade. However, the origin and the nature of these bubbles remain elusive. In this review, I summarize the observations related to the Fermi/eROSITA Bubbles at different scales and wavelengths, and give a brief overview of our current understanding of them.
Unveiling the Universe with emerging cosmological probes
The detection of the accelerated expansion of the Universe has been one of the major breakthroughs in modern cosmology. Several cosmological probes (Cosmic Microwave Background, Supernovae Type Ia, Baryon Acoustic Oscillations) have been studied in depth to better understand the nature of the mechanism driving this acceleration, and they are being currently pushed to their limits, obtaining remarkable constraints that allowed us to shape the standard cosmological model. In parallel to that, however, the percent precision achieved has recently revealed apparent tensions between measurements obtained from different methods. These are either indicating some unaccounted systematic effects, or are pointing toward new physics. Following the development of CMB, SNe, and BAO cosmology, it is critical to extend our selection of cosmological probes. Novel probes can be exploited to validate results, control or mitigate systematic effects, and, most importantly, to increase the accuracy and robustness of our results. This review is meant to provide a state-of-art benchmark of the latest advances in emerging “beyond-standard” cosmological probes. We present how several different methods can become a key resource for observational cosmology. In particular, we review cosmic chronometers, quasars, gamma-ray bursts, standard sirens, lensing time-delay with galaxies and clusters, cosmic voids, neutral hydrogen intensity mapping, surface brightness fluctuations, stellar ages of the oldest objects, secular redshift drift, and clustering of standard candles. The review describes the method, systematics, and results of each probe in a homogeneous way, giving the reader a clear picture of the available innovative methods that have been introduced in recent years and how to apply them. The review also discusses the potential synergies and complementarities between the various probes, exploring how they will contribute to the future of modern cosmology.