Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,684 result(s) for "gap dynamics"
Sort by:
Gap-phase dynamics and coexistence of a long-lived pioneer and shade-tolerant tree species in the canopy of an old-growth coastal temperate rain forest of Chiloé Island, Chile
A major question with regard to the ecology of temperate rain forests in south-central Chile is how pioneer and shade-tolerant tree species coexist in old-growth forests. We explored the correspondence between tree regeneration dynamics and life-history traits to explain the coexistence of these two functional types in stands apparently representing a non-equilibrium mixture. This study was conducted in northern Chiloé Island, Chile (41.6° S, 73.9° W) in a temperate coastal rain forest with no evidence of stand disruption by human impact. We assessed stand structure by sampling all stems within two 50 x 20 m and four 5 x 100 m plots. A 600-m long transect, with 20 uniformly spaced sampling points, was used to quantify seedling and sapling densities, obtain increment cores, and randomly select 10 tree-fall gaps. We used tree-ring analysis to assess establishment periods and to relate the influences of disturbances to the regeneration dynamics of the main canopy species. Canopy emergent tree species were the long-lived pioneer Eucryphia cordifolia and the shade-tolerant Aextoxicon punctatum. Shade-tolerant species such as Laureliopsis philippiana and several species of Myrtaceae occupied the main canopy. The stem diameter distribution for E. cordifolia was distinctly unimodal, while for A. punctatum it was multi-modal, with all age classes represented. Myrtaceae accounted for most of the small trees. Most tree seedlings and saplings occurred beneath canopy gaps. Based on tree-ring counts, the largest individuals of A. punctatum and E. cordifolia had minimum ages estimated to be > 350 years and > 286 years, respectively. Shade-tolerant Myrtaceae species and L. philippiana had shorter life spans (< 200 years). Most growth releases, regardless of tree species, were moderate and have occurred continuously since 1750. We suggest that this coastal forest has remained largely free of stand-disrupting disturbances for at least 450 years, without substantial changes in canopy composition. Release patterns are consistent with this hypothesis and suggest that the disturbance regime is dominated by individual tree-fall gaps, with sporadic multiple tree falls. Long life spans, maximum height and differences in shade tolerance provide a basis for understanding the long-term coexistence of pioneer and shade-tolerant tree species in this coastal, old-growth rain forest, despite the rarity of major disturbances.
Canopy gap patterns in Mediterranean forests: a spatio-temporal characterization using airborne LiDAR data
ContextIn the last century European forests are experiencing tree damage and mortality rise and it is expected to continue due to increased disturbances under global change. Disturbances generally creates canopy gaps, which leads to secondary succession, compositional changes and landscape mosaic transformations. Forest gap characterization has traditionally been performed in light-limited tropical and boreal forests, but no studies have been found on water-limited Mediterranean forests. Characterising canopy gaps and their dynamics in Mediterranean forests will help to better understand their dynamics across landscapes under ongoing global change.ObjectivesWe aimed to characterize canopy gaps and quantify their dynamics identifying hotspots of openings and closings in Mediterranean forests.MethodsWe used low density multitemporal airborne LiDAR data between 2010 and 2016, over a large region (Madrid, Spain, 1732.7 km2) with forests ranging from monospecific conifer and broadleaved to mixed forests, to delineate canopy gaps. The characterization was made through its Gap Size Frequency Distribution (GSFD) by forest type and year. We analysed canopy gap dynamics and identified statistically significant hotspots of gap openings and closings in each forest type.ResultsThere were major differences between conifers and broadleaved forest in terms of gap characteristics and GSFD. In general, we found a great dynamism in Mediterranean forests with high rates of forest openings and closings, but a net closing trend. A high spatial heterogeneity was observed finding hotspots of gap openings and closings across the entire study area.ConclusionsWe characterised for the first-time large-scale structure and dynamics of canopy gaps in Mediterranean forests. Our results represents the characterisation of the GSFD of Mediterranean forests and could be considered a benchmark for future studies. The provision of up-to-date periodic maps of hotspots of gap opening, closing and net change help to understand landscape mosaic changes as well as to prioritise forest management and restoration strategies.
The legacy of episodic climatic events in shaping temperate, broadleaf forests
In humid, broadleaf-dominated forests where gap dynamics and partial canopy mortality appears to dominate the disturbance regime at local scales, paleoecological evidence shows alteration at regional-scales associated with climatic change. Yet, little evidence of these broad-scale events exists in extant forests. To evaluate the potential for the occurrence of large-scale disturbance, we used 76 tree-ring collections spanning ∼840 000 km 2 and 5327 tree recruitment dates spanning ∼1.4 million km 2 across the humid eastern United States. Rotated principal component analysis indicated a common growth pattern of a simultaneous reduction in competition in 22 populations across 61 000 km 2 . Growth-release analysis of these populations reveals an intense and coherent canopy disturbance from 1775 to 1780, peaking in 1776. The resulting time series of canopy disturbance is so poorly described by a Gaussian distribution that it can be described as \"heavy tailed,\" with most of the years from 1775 to 1780 comprising the heavy-tail portion of the distribution. Historical documents provide no evidence that hurricanes or ice storms triggered the 1775-1780 event. Instead, we identify a significant relationship between prior drought and years with elevated rates of disturbance with an intense drought occurring from 1772 to 1775. We further find that years with high rates of canopy disturbance have a propensity to create larger canopy gaps indicating repeated opportunities for rapid change in species composition beyond the landscape scale. Evidence of elevated, regional-scale disturbance reveals how rare events can potentially alter system trajectory: a substantial portion of old-growth forests examined here originated or were substantially altered more than two centuries ago following events lasting just a few years. Our recruitment data, comprised of at least 21 species and several shade-intolerant species, document a pulse of tree recruitment at the subcontinental scale during the late-1600s suggesting that this event was severe enough to open large canopy gaps. These disturbances and their climatic drivers support the hypothesis that punctuated, episodic, climatic events impart a legacy in broadleaf-dominated forests centuries after their occurrence. Given projections of future drought, these results also reveal the potential for abrupt, meso- to large-scale forest change in broadleaf-dominated forests over future decades.
Disentangling competitive vs. climatic drivers of tropical forest mortality
1. Tropical forest mortality is controlled by both biotic and abiotic processes, but how these processes interact to determine forest structure is not well understood. Using long-term demography data from permanent forest plots at the Paracou Tropical Forest Research Station in French Guiana, we analysed the relative influence of competition and climate on tree mortality. We found that self-thinning is evident at the stand level, and is associated with clumped mortality at smaller scales (<2 m) and regular spacing of living trees at intermediate (2.5-7.5 m) scales. A competition index (CI) based on spatial clustering of dead trees was used to build predictive mortality models, which also accounted for climate interactions. 2. The model that most closely fitted observations included both the CI and climatic variables, with climate-only and competition-only models less informative than the full model. There was strong evidence for U-shaped size-specific mortality, with highest mortality for small and very large trees, as well as sensitivity of trees to drought, especially when temperatures were high, and when soils were water saturated. The effect of the CI was more complex than expected a priori: a higher CI was associated with lower mortality odds, which we hypothesize is caused by gap-phase dynamics, but there was also evidence for competition-induced mortality at very high CI values. 3. The strong signature of competition as a control over mortality at the stand and individual scales confirms its important role in determining tropical forest structure. The complexity of the competition-mortality relationship and its interaction with climate indicates that a thorough consideration of the scale of analysis is needed when inferring the role of competition in tropical forests, but demonstrates that climate-only mortality models can be significantly improved by including competition effects, even when ignoring species-specific effects. 4. Synthesis. Empirical models such as the one developed here can help constrain and improve process-based vegetation models, serving both as a benchmark and as a means to disentangle mortality processes. Tropical vegetation dynamic models would benefit greatly from explicitly considering the role of competition in stand development and self-thinning while modelling demography, as well as its interaction with climate.
Forest gaps increase true bug diversity by recruiting open land species
Forests canopy gaps play an important role in forest ecology by driving the forest mosaic cycle and creating conditions for rapid plant reproduction and growth. The availability of young plants, which represent resources for herbivores, and modified environmental conditions with greater availability of light and higher temperatures, promote the colonization of animals. Remarkably, the role of gaps on insect communities has received little attention and the source of insects colonizing gaps has not been studied comprehensively. Using a replicated full-factorial forest experiment (treatments: Gap; Gap + Deadwood; Deadwood; Control), we show that following gap creation, there is a rapid change in the true bug (Heteroptera) community structure, with an increase in species that are mainly recruited from open lands. Compared with closed-canopy treatments (Deadwood and Control), open canopy treatments (Gap and Gap + Deadwood) promoted an overall increase in species (+ 59.4%, estimated as number of species per plot) and individuals (+ 76.3%) of true bugs, mainly herbivores and species associated to herbaceous vegetation. Community composition also differed among treatments, and all 17 significant indicator species (out of 117 species in total) were associated with the open canopy treatments. Based on insect data collected in grasslands and forests over an 11-year period, we found that the species colonizing experimental gaps had greater body size and a greater preference for open vegetation. Our results indicate that animal communities that assemble following gap creation contain a high proportion of habitat generalists that not occurred in closed forests, contributing significantly to overall diversity in forest mosaics.
steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape
Old-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. The size distribution and return frequency of disturbance events, and subsequent recovery processes, determine to a large extent the spatial scale over which this old-growth steady state develops. Here, we characterize this mosaic for a Central Amazon forest by integrating field plot data, remote sensing disturbance probability distribution functions, and individual-based simulation modeling. Results demonstrate that a steady state of patches of varying successional age occurs over a relatively large spatial scale, with important implications for detecting temporal trends on plots that sample a small fraction of the landscape. Long highly significant stochastic runs averaging 1.0 Mg biomass⋅ha ⁻¹⋅y ⁻¹ were often punctuated by episodic disturbance events, resulting in a sawtooth time series of hectare-scale tree biomass. To maximize the detection of temporal trends for this Central Amazon site (e.g., driven by CO ₂ fertilization), plots larger than 10 ha would provide the greatest sensitivity. A model-based analysis of fractional mortality across all gap sizes demonstrated that 9.1–16.9% of tree mortality was missing from plot-based approaches, underscoring the need to combine plot and remote-sensing methods for estimating net landscape carbon balance. Old-growth tropical forests can exhibit complex large-scale structure driven by disturbance and recovery cycles, with ecosystem and community attributes of hectare-scale plots exhibiting continuous dynamic departures from a steady-state condition.
Post-Logging Canopy Gap Dynamics and Forest Regeneration Assessed Using Airborne LiDAR Time Series in the Brazilian Amazon with Attribution to Gap Types and Origins
Gaps are openings within tropical forest canopies created by natural or anthropogenic disturbances. Important aspects of gap dynamics that are not well understood include how gaps close over time and their potential for contagiousness, indicating whether the presence of gaps may or may not induce the creation of new gaps. This is especially important when we consider disturbances from selective logging activities in rainforests, which take away large trees of high commercial value and leave behind a forest full of gaps. The goal of this study was to quantify and understand how gaps open and close over time within tropical rainforests using a time series of airborne LiDAR data, attributing observed processes to gap types and origins. For this purpose, the Jamari National Forest located in the Brazilian Amazon was chosen as the study area because of the unique availability of multi-temporal small-footprint airborne LiDAR data covering the time period of 2011–2017 with five data acquisitions, alongside the geolocation of trees that were felled by selective logging activities. We found an increased likelihood of natural new gaps opening closer to pre-existing gaps associated with felled tree locations (<20 m distance) rather than farther away from them, suggesting that small-scale disturbances caused by logging, even at a low intensity, may cause a legacy effect of increased mortality over six years after logging due to gap contagiousness. Moreover, gaps were closed at similar annual rates by vertical and lateral ingrowth (16.7% yr−1) and about 90% of the original gap area was closed at six years post-disturbance. Therefore, the relative contribution of lateral and vertical growth for gap closure was similar when consolidated over time. We highlight that aboveground biomass or carbon density of logged forests can be overestimated if considering only top of the canopy height metrics due to fast lateral ingrowth of neighboring trees, especially in the first two years of regeneration where 26% of gaps were closed solely by lateral ingrowth, which would not translate to 26% of regeneration of forest biomass. Trees inside gaps grew 2.2 times faster (1.5 m yr−1) than trees at the surrounding non-gap canopy (0.7 m yr−1). Our study brings new insights into the processes of both the opening and closure of forest gaps within tropical forests and the importance of considering gap types and origins in this analysis. Moreover, it demonstrates the capability of airborne LiDAR multi-temporal data in effectively characterizing the impacts of forest degradation and subsequent recovery.
Large tree mortality leads to major aboveground biomass decline in a tropical forest reserve
Humans are transforming the ecology of the Earth through rapid changes in land use and climate. These changes can affect tropical forest structure, dynamics and diversity. While numerous studies have focused on diversity metrics, other aspects of forest function, such as long-term biomass dynamics, are often less considered. We evaluated plant community structure change (i.e., abundance, diversity, composition, and aboveground biomass) in a 2.25 ha forest dynamics plot located within a ~ 365 ha reserve in southern Costa Rica. We censused, mapped and identified to species all plants ≥ 5 cm diameter at breast height (DBH) in three surveys spanning 2010–2020. While there were no changes in late-successional species diversity, there were marked changes in overall species composition and biomass. Abundance of large (≥ 40 cm DBH) old-growth dense-wooded trees (e.g., Lauraceae, Rosaceae) decreased dramatically (27%), leading to major biomass decline over time, possibly driven by recent and recurrent drought events. Gaps created by large trees were colonized by early-successional species, but these recruits did not make up for the biomass lost. Finally, stem abundance increased by 20%, driven by increasing dominance of Hampea appendiculata. While results suggest this reserve may effectively conserve overall plant diversity, this may mask other key shifts such as large aboveground biomass loss. If this pattern is pervasive across tropical forest reserves, it could hamper efforts to preserve forest structure and ecosystem services (e.g., carbon storage). Monitoring programs could better assess carbon trends in reserves over time simply by tracking large tree dynamics.
The Role of Canopy Cover Dynamics over a Decade of Changes in the Understory of an Atlantic Beech-Oak Forest
The understory of temperate forests harbour most of the plant species diversity present in these ecosystems. The maintenance of this diversity is strongly dependent on canopy gap formation, a disturbance naturally happening in non-managed forests, which promotes spatiotemporal heterogeneity in understory conditions. This, in turn, favours regeneration dynamics, functioning and structural complexity by allowing changes in light, moisture and nutrient availability. Our aim is to study how gap dynamics influence the stability of understory plant communities over a decade, particularly in their structure and function. The study was carried out in 102 permanent plots (sampled in 2006 and revisited in 2016) distributed throughout a 132 ha basin located in a non-managed temperate beech-oak forest (Bertiz Natural Park, Spain). We related changes in the taxonomical and functional composition and diversity of the understory vegetation to changes in canopy coverage. We found that gap dynamics influenced the species composition and richness of the understory through changes in light availability and leaf litter cover. Species with different strategies related to shade tolerance and dispersion established in the understory following the temporal evolution of gaps. However, changes in understory species composition in response to canopy dynamics occur at a slow speed in old-growth temperate forests, needing more than a decade to really be significant. The presence of gaps persisting more than ten years is essential for maintaining the heterogeneity and stability of understory vegetation in old-growth temperate forests.
Understanding Disturbance Regimes From Patterns in Modeled Forest Biomass
Natural and anthropogenic disturbances are important drivers of tree mortality, shaping the structure, composition, and biomass distribution of forest ecosystems. Differences in disturbance regimes, characterized by the frequency, extent, and intensity of disturbance events, result in structurally different landscapes. In this study, we design a model‐based experiment to investigate the links between disturbance regimes and spatial biomass patterns. First, the effects of disturbance events on biomass patterns are simulated using a simple dynamic carbon cycle model based on different disturbance regime attributes, which are characterized via three parameters: μ (probability scale), α (clustering degree), and β (intensity slope). 856,800 dynamically stable biomass patterns were then simulated using combined disturbance regime, primary productivity, and background mortality. As independent variables, we use biomass synthesis statistics from simulated biomass patterns to retrieve three disturbance regime parameters. Results show confident inversion of all three “true” disturbance parameters, with Nash‐Sutcliffe efficiency of 94.8% for μ, 94.9% for α, and 97.1% for β. Biomass histogram statistics primarily dominate the prediction of μ and β, while texture features have a more substantial influence on α. Overall, these results demonstrate the association between biomass patterns and disturbance regimes. Given the increasing availability of Earth observation of biomass, our findings open a new avenue to understand better and parameterize disturbance regimes and their links with vegetation dynamics under climate change. Ultimately, at a large scale, this approach would improve our current understanding of controls and feedback at the biosphere‐atmosphere interface in the present Earth system models. Plain Language Summary Forest dynamics are shaped by different disturbances, which are challenging to monitor and predict. Identifying individual disturbance occurrences and their impact on forest carbon stocks (biomass) is complex. However, our study deciphers the characteristics of disturbance occurrence, that is, disturbance regime, from biomass pattern. We characterized this regime across three dimensions: extent (μ), frequency (α), and intensity (β). Through a 200‐year landscape experiment, we explored the synthetic dynamically stable biomass under different disturbance regimes. Statistical features from biomass simulations revealed distinct spatial patterns, forming a connection between these patterns and the disturbance regime parameters via machine learning. Notably, specific biomass pattern statistics influence distinct disturbance regime parameters: μ and β are linked to histogram stats, while α is tied to texture statistics. This approach establishes a framework to diagnose disturbance regimes from biomass patterns, offering a way to incorporate these regimes into Earth system models. Key Points We investigate the link between disturbance regimes and spatial patterns of aboveground biomass emerging from diverse primary productivity The proposed framework allows for inferring disturbance probability, size and intensity from spatial features in aboveground biomass Disturbance regimes from high‐res Earth observations can enhance carbon cycle dynamics prediction from interannual to longer time scales